boundary layer turbulence
Recently Published Documents


TOTAL DOCUMENTS

303
(FIVE YEARS 63)

H-INDEX

33
(FIVE YEARS 5)

2021 ◽  
Vol 11 (24) ◽  
pp. 11934
Author(s):  
Jiadong Zeng ◽  
Zhitian Zhang ◽  
Mingshui Li ◽  
Zhiguo Li

Three types of turbulence fields were investigated using a research method combining wind tunnel tests and theoretical analysis to further explore the spatial structure of atmospheric boundary layer turbulence, which was passively simulated by a wind tunnel. The fundamental theory of turbulence is introduced, and some traditional theoretical coherence models based on isotropic turbulence theory are derived. The difference between the theoretical results and the passive simulation of atmospheric boundary layer turbulence was compared and discussed. The analysis results show that the passively simulated atmospheric turbulence basically conformed to the homogeneous isotropic turbulence assumption on the horizontal plane, but the interference of the nonisotropic turbulence components cannot be ignored either. Finally, some improvements were made to the traditional coherence function model based on the experimental results to apply the passively simulated atmospheric boundary layer turbulence.


2021 ◽  
Vol 21 (20) ◽  
pp. 15949-15968
Author(s):  
Yunshuai Zhang ◽  
Qian Huang ◽  
Yaoming Ma ◽  
Jiali Luo ◽  
Chan Wang ◽  
...  

Abstract. Lake breezes are proved by downdrafts and the divergence flows of zonal wind in the source region of the Yellow River (SRYR) in the daytime based on ERA-Interim reanalysis data. In order to depict the effect of the circulations induced by surface anomaly heating (patches) on the boundary-layer turbulence, the UK Met Office Large Eddy Model was used to produce a set of 1D strip-like surface heat flux distributions based on observations, which were obtained by a field campaign in the Ngoring Lake basin in the summer of 2012. The simulations show that for the cases without background wind, patch-induced circulations (SCs) promote the growth of convective boundary layer (CBL), enhance the turbulent kinetic energy (TKE), and then modify the spatial distribution of TKE. Based on phase-averaged analysis, which separates the attribution from the SCs and the background turbulence, the SCs contribute no more than 10 % to the vertical turbulent intensity, but their contributions to the heat flux can be up to 80 %. The thermal internal boundary layer (TIBL) reduces the wind speed and forms the stable stratification, which produces the obvious change of turbulent momentum flux and heat flux over the heterogeneous surfaces. The increased downdrafts, which mainly occur over the lake patches, carry more warm, dry air down from the free atmosphere. The background wind inhibits the SCs and the development of the CBL; it also weakens the patch-induced turbulent intensity, heat flux, and convective intensity.


Author(s):  
Edward J. Strobach

AbstractParameterizing boundary layer turbulence is a critical component of numerical weather prediction and the representation of turbulent mixing of momentum, heat, and other tracers. The components that make up a boundary layer scheme can vary considerably, with each scheme having a combination of processes that are physically represented along with tuning parameters that optimize performance. Isolating a component of a PBL scheme to examine its impact is essential for understanding the evolution of boundary layer profiles and their impact on the mean structure. In this study we conduct three experiments with the scale-aware TKE eddy-diffusivity mass-flux (sa-TKE-EDMF) scheme: 1) releasing the upper limit constraints placed on mixing lengths, 2) incrementally adjusting the tuning coefficient related to wind shear in the modified Bougeault and Lacarrere (BouLac) mixing length formulation, and 3) replacing the current mixing length formulations with those used in the MYNN scheme. A diagnostic approach is adopted to characterize the bulk representation of turbulence within the residual layer and boundary layer in order to understand the importance of different terms in the TKE budget as well as to assess how the balance of terms changes between mixing length formulations. Although our study does not seek to determine the best formulation, it was found that strong imbalances led to considerably different profile structures both in terms of the resolved and subgrid fields. Experiments where this balance was preserved showed a minor impact on the mean structure regardless of the turbulence generated. Overall, it was found that changes to mixing length formulations and/or constraints had stronger impacts during the day while remaining partially insensitive during the evening.


2021 ◽  
Vol 14 (8) ◽  
pp. 5183-5204
Author(s):  
Yixiong Lu ◽  
Tongwen Wu ◽  
Yubin Li ◽  
Ben Yang

Abstract. The spurious double Intertropical Convergence Zone (ITCZ) is one of the most prominent systematic biases in coupled atmosphere–ocean general circulation models (CGCMs), and the underestimated marine stratus over eastern subtropical oceans has been recognized as a possible contributor. Rather than modifying the cloud scheme itself, this study significantly ameliorates the marine stratus simulation through improving parameterizations of boundary-layer turbulence and shallow convection in the medium-resolution Beijing Climate Center Climate System Model version 2 (BCC-CSM2-MR). The University of Washington moist turbulence scheme is implemented in BCC-CSM2-MR to better represent the stratocumulus, and a decoupling criterion is also introduced to the shallow convection scheme for improving the simulation of the stratocumulus-to-cumulus transition. Results show that the simulated precipitation in the eastern Pacific south of the Equator is largely reduced, alleviating the double ITCZ problem. The tropical precipitation asymmetry index increases from −0.024 in the original BCC-CSM2-MR to 0.147 in the revised BCC-CSM2-MR, which is much closer to the observation. The study suggests that improving parameterizations of boundary-layer turbulence and shallow convection is effective for mitigating the double ITCZ syndrome in CGCMs.


2021 ◽  
Vol 62 (8) ◽  
Author(s):  
Keill J. Hopkins ◽  
Hadas Porat ◽  
Timothy J. McIntyre ◽  
Vincent Wheatley ◽  
Ananthanarayanan Veeraragavan

2021 ◽  
Author(s):  
Tomi Raatikainen ◽  
Marje Prank ◽  
Jaakko Ahola ◽  
Harri Kokkola ◽  
Juha Tonttila ◽  
...  

Abstract. Shallow marine mixed-phase clouds are important for the radiative balance, but modelling their formation and dynamics is challenging. These clouds depend on boundary layer turbulence and cloud top radiative cooling, which is related to the cloud phase. The fraction of frozen droplets depends on the availability of suitable ice nucleating particles (INPs), which initiate droplet freezing. While desert dust is the dominating INP type in most regions, remote boundary layer clouds are dependent on local marine INP emissions, which are often related to biogenic sources including phytoplankton. Here we use high resolution large eddy simulations to examine the potential effects of marine emissions on boundary layer INP concentrations and their effects on clouds. Surface emissions have a direct effect on INP concentration in a typical well-mixed boundary layer whereas a steep inversion can block the import of background INPs from the free troposphere. The importance of the marine source depends on the background INP concentration, so that marine emissions become dominant with low background concentrations. For the INP budget it is also important to account for INP recycling. Finally, with the high-resolution model we show how ice nucleation hotspots and high INPs concentrations are focused on updraught regions. Our results show that marine INP emissions contribute directly to the boundary layer INP budget and therefore have an influence on mixed-phase clouds.


Sign in / Sign up

Export Citation Format

Share Document