1015 Study on the Wall Boundary Condition in Smoothed Particle Hydrodynamics

2005 ◽  
Vol 2005.80 (0) ◽  
pp. _10-29_-_10-30_
Author(s):  
Ryo MURATA ◽  
Takehiko INABA ◽  
Yasutaka YAMAGUCHI
Author(s):  
Tuan Minh Nguyen ◽  
Abdelraheem M. Aly ◽  
Sang-Wook Lee

Purpose The purpose of this paper is to improve the 2D incompressible smoothed particle hydrodynamics (ISPH) method by working on the wall boundary conditions in ISPH method. Here, two different wall boundary conditions in ISPH method including dummy wall particles and analytical kernel renormalization wall boundary conditions have been discussed in details. Design/methodology/approach The ISPH algorithm based on the projection method with a divergence velocity condition with improved boundary conditions has been adapted. Findings The authors tested the current ISPH method with the improved boundary conditions by a lid-driven cavity for different Reynolds number 100 ≤ Re ≤ 1,000. The results are well validated with the benchmark problems. Originality/value In the case of dummy wall boundary particles, the homogeneous Newman boundary condition was applied in solving the linear systems of pressure Poisson equation. In the case of renormalization wall boundary conditions, the authors analytically computed the renormalization factor and its gradient based on a quintic kernel function.


2013 ◽  
Vol 62 (4) ◽  
pp. 044702
Author(s):  
Han Ya-Wei ◽  
Qiang Hong-Fu ◽  
Zhao Jiu-Ling ◽  
Gao Wei-Ran

2012 ◽  
Vol 516-517 ◽  
pp. 1043-1047
Author(s):  
Feng Jin ◽  
Chao Wan ◽  
Hu Ying Liu

A method approaching mirror boundary condition for smoothed particle hydrodynamics (SPH) method is presented. The virtual particle is generated through the nearest boundary particle of the flow particle. The operation is relatively simple and convenient and the applicability to the complexity boundaries can be markedly enhanced. The two dimensional non-linear sloshing is simulated with the new boundary condition. The results are in good agreement with the mirror boundary condition and the boundary force condition dada. It shows that this boundary condition can work well for SPH models.


2008 ◽  
Vol 96 (6) ◽  
pp. 263-268 ◽  
Author(s):  
E. Mounif ◽  
V. Bellenger ◽  
A. Ammar ◽  
R. Ata ◽  
P. Mazabraud ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document