405 Internal Gravity Wave Resonance of Thermal Convection Fields in a Rectangular Cavity with Heat-Flux Vibration

2005 ◽  
Vol 2005.58 (0) ◽  
pp. 131-132
Author(s):  
Shota MATSUMURA ◽  
Hideshi ISHIDA ◽  
Hideo KIMOTO
Author(s):  
Hideshi Ishida ◽  
Shiho Ihara ◽  
Chiharu Okema ◽  
Shohei Yamada ◽  
Genta Kawahara

This study demonstrates a global, non-parametric, non-iterative optimization of time-mean value of a kind of index vibrated by time-varying forcing. It is based on the fact that the (steady) forced vibration of non-autonomous ordinary differential equation systems is well approximated by an analytical solution when the amplitude of forcing is sufficiently small and its base state without forcing is stable and steady. It is applied to optimize a time-averaged heat-transfer rate on a two-dimensional thermal convection field in a square cavity with horizontal temperature difference, and the globally optimal way of vibrational forcing, i.e. the globally optimal, spatial distribution of vibrational heat and vorticity sources, is first obtained. The maximized vibrational thermal convection corresponds well to the state of internal gravity wave resonance. In contrast, the minimized thermal convection is weak, keeping the boundary layers on both sidewalls thick.


Author(s):  
Hideshi ISHIDA ◽  
Shiho Ihara ◽  
Chiharu Okema ◽  
Shohei Yamada ◽  
Genta Kawahara

This study demonstrates a global, non-parametric, non-iterative optimization of time-mean value of a kind of index vibrated by time-varying forcing. It is based on the fact that the (steady) forced vibration of non-autonomous ordinary differential equation systems is well approximated by an analytical solution when the amplitude of forcing is sufficiently small and its base state without forcing is linearly stable and steady. It is applied to optimize a time-averaged heat-transfer rate on a two-dimensional thermal convection field in a square cavity with horizontal temperature difference, and the globally optimal way of vibrational forcing, i.e. the globally optimal, spatial distribution of vibrational heat and vorticity sources, is first obtained. The maximized vibrational thermal convection corresponds well to the state of internal gravity wave resonance. In contrast, the minimized thermal convection is weak, keeping the boundary layers on both sidewalls thick.


1982 ◽  
Vol 119 ◽  
pp. 367-377 ◽  
Author(s):  
J. Klostermeyer

The equations describing parametric instabilities of a finite-amplitude internal gravity wave in an inviscid Boussinesq fluid are studied numerically. By improving the numerical approach, discarding the concept of spurious roots and considering the whole range of directions of the Floquet vector, Mied's work is generalized to its full complexity. In the limit of large disturbance wavenumbers, the unstable disturbances propagate in the directions of the two infinite curve segments of the related resonant-interaction diagram. They can therefore be classified into two families which are characterized by special propagation directions. At high wavenumbers the maximum growth rates converge to limits which do not depend on the direction of the Floquet vector. The limits are different for both families; the disturbance waves propagating at the smaller angle to the basic gravity wave grow at the larger rate.


2014 ◽  
Vol 763 ◽  
pp. 109-135 ◽  
Author(s):  
Sebastian Wagner ◽  
Olga Shishkina

AbstractDirect numerical simulations (DNS) of turbulent thermal convection in a box-shaped domain with regular surface roughness at the heated bottom and cooled top surfaces are conducted for Prandtl number $\mathit{Pr}=0.786$ and Rayleigh numbers $\mathit{Ra}$ between $10^{6}$ and $10^{8}$. The surface roughness is introduced by four parallelepiped equidistantly distributed obstacles attached to the bottom plate, and four obstacles located symmetrically at the top plate. By varying $\mathit{Ra}$ and the height and width of the obstacles, we investigate the influence of the regular wall roughness on the turbulent heat transport, measured by the Nusselt number $\mathit{Nu}$. For fixed $\mathit{Ra}$, the change in the value of $\mathit{Nu}$ is determined not only by the covering area of the surface, i.e. the obstacle height, but also by the distance between the obstacles. The heat flux enhancement is found to be largest for wide cavities between the obstacles which can be ‘washed out’ by the flow. This is also manifested in an empirical relation, which is based on the DNS data. We further discuss theoretical limiting cases for very wide and very narrow obstacles and combine them into a simple model for the heat flux enhancement due to the wall roughness, without introducing any free parameters. This model predicts well the general trends and the order of magnitude of the heat flux enhancement obtained in the DNS. In the $\mathit{Nu}$ versus $\mathit{Ra}$ scaling, the obstacles work in two ways: for smaller $\mathit{Ra}$ an increase of the scaling exponent compared to the smooth case is found, which is connected to the heat flux entering the cavities from below. For larger $\mathit{Ra}$ the scaling exponent saturates to the one for smooth plates, which can be understood as a full washing-out of the cavities. The latter is also investigated by considering the strength of the mean secondary flow in the cavities and its relation to the wind (i.e. the large-scale circulation), that develops in the core part of the domain. Generally, an increase in the roughness height leads to stronger flows both in the cavities and in the bulk region, while an increase in the width of the obstacles strengthens only the large-scale circulation of the fluid and weakens the secondary flows. An increase of the Rayleigh number always leads to stronger flows, both in the cavities and in the bulk.


Sign in / Sign up

Export Citation Format

Share Document