fluid layer
Recently Published Documents


TOTAL DOCUMENTS

1398
(FIVE YEARS 160)

H-INDEX

60
(FIVE YEARS 4)

2021 ◽  
Vol 933 ◽  
Author(s):  
Baole Wen ◽  
David Goluskin ◽  
Charles R. Doering

The central open question about Rayleigh–Bénard convection – buoyancy-driven flow in a fluid layer heated from below and cooled from above – is how vertical heat flux depends on the imposed temperature gradient in the strongly nonlinear regime where the flows are typically turbulent. The quantitative challenge is to determine how the Nusselt number $Nu$ depends on the Rayleigh number $Ra$ in the $Ra\to \infty$ limit for fluids of fixed finite Prandtl number $Pr$ in fixed spatial domains. Laboratory experiments, numerical simulations and analysis of Rayleigh's mathematical model have yet to rule out either of the proposed ‘classical’ $Nu \sim Ra^{1/3}$ or ‘ultimate’ $Nu \sim Ra^{1/2}$ asymptotic scaling theories. Among the many solutions of the equations of motion at high $Ra$ are steady convection rolls that are dynamically unstable but share features of the turbulent attractor. We have computed these steady solutions for $Ra$ up to $10^{14}$ with $Pr=1$ and various horizontal periods. By choosing the horizontal period of these rolls at each $Ra$ to maximize $Nu$ , we find that steady convection rolls achieve classical asymptotic scaling. Moreover, they transport more heat than turbulent convection in experiments or simulations at comparable parameters. If heat transport in turbulent convection continues to be dominated by heat transport in steady rolls as $Ra\to \infty$ , it cannot achieve the ultimate scaling.


2021 ◽  
Vol 933 ◽  
Author(s):  
Yu Liang ◽  
Xisheng Luo

Shock-induced light-fluid-layer evolution is firstly investigated experimentally and theoretically. Specifically, three quasi-one-dimensional helium gas layers with different layer thicknesses are generated to study the wave patterns and interface motions. Six quasi-two-dimensional helium gas layers with diverse layer thicknesses and amplitude combinations are created to explore the Richtmyer–Meshkov instability of a light-fluid layer. Due to the multiple reflected shocks reverberating inside a light-fluid layer, the speeds of the two interfaces gradually converge, and the layer thickness saturates eventually. A general one-dimensional theory is adopted to describe the two interfaces’ motions and the layer thickness variations. It is found that, for the first interface, the end time of its phase reversal determines the influence of the reflected shocks on it. However, the reverberated shocks indeed lead to the second interface being more unstable. When the two interfaces are initially in phase, and the initial fluid layer is very thin, the two interfaces’ spike heads collide and stabilise the two interfaces. Linear and nonlinear models are successfully adopted by considering the interface-coupling effect and the reverberated shocks to predict the two interfaces’ perturbation growths in all regimes. The interfacial instability of a light-fluid layer is quantitatively compared with that of a heavy-fluid layer. It is concluded that the kind of waves reverberating inside a fluid layer significantly affects the fluid-layer evolution.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4383
Author(s):  
Michelle Spanjaards ◽  
Gerrit Peters ◽  
Martien Hulsen ◽  
Patrick Anderson

The extrusion of highly filled elastomers is widely used in the automotive industry. In this paper, we numerically study the effect of thixotropy on 2D planar extrudate swell for constant and fluctuating flow rates, as well as the effect of thixotropy on the swell behavior of a 3D rectangular extrudate for a constant flowrate. To this end, we used the Finite Element Method. The state of the network structure in the material is described using a kinetic equation for a structure parameter. Rate and stress-controlled models for this kinetic equation are compared. The effect of thixotropy on extrudate swell is studied by varying the damage and recovery parameters in these models. It was found that thixotropy in general decreases extrudate swell. The stress-controlled approach always predicts a larger swell ratio compared to the rate-controlled approach for the Weissenberg numbers studied in this work. When the damage parameter in the models is increased, a less viscous fluid layer appears near the die wall, which decreases the swell ratio to a value lower than the Newtonian swell ratio. Upon further increasing the damage parameter, the high viscosity core layer becomes very small, leading to an increase in the swell ratio compared to smaller damage parameters, approaching the Newtonian value. The existence of a low-viscosity outer layer and a high-viscosity core in the die have a pronounced effect on the swell ratio for thixotropic fluids.


2021 ◽  
pp. 4039-4055
Author(s):  
N. Manjunatha ◽  
R. Sumithra

The problem of non-Darcian-Bènard double diffusive magneto-Marangoni convection   is considered in a horizontal infinite two layer system. The system consists of a two-component fluid layer placed above a porous layer, saturated with the same fluid with a constant heat sources/sink in both the layers, in the presence of a vertical magnetic field.   The lower porous layer is bounded by rigid boundary, while the upper boundary of the fluid region is free with the presence of Marangoni effects.  The system of ordinary differential equations obtained after normal mode analysis is solved in a closed form for the eigenvalue and the Thermal Marangoni Number (TMN) for two cases of Thermal Boundary Combinations (TBC); these are type (i) Adiabatic-Adiabatic and type (ii) Adiabatic-Isothermal.  The corresponding two TMNs   are obtained and the impacts of the porous parameter, solute Marangoni number, modified internal Rayleigh numbers, viscosity ratio, and the diffusivity ratios on the non-Darcian-Bènard double diffusive magneto - Marangoni convection are studied in detail.


Author(s):  
Palle Kiran

Abstract This paper investigates the effect of gravity modulation on Rayleigh–Bénard convection using the rigid isothermal boundary conditions. We calculate heat transfer results using the Nusselt and mean Nusselt numbers through the finite-amplitude of convection, which we got from the Ginzburg–Landau equation (GLE). The Ginzburg–Landau equation is derived analytically from the Fredholm solvability condition at third order. The finite amplitude equation (GLE) is a function of system parameters and solved numerically. The gravity modulation considered in terms of steady and sinusoidal parts. The sinusoidal part defines gravity modulation in terms of amplitude and frequency. Our study shows that gravity modulation controls the heat transfer results. The amplitude of modulation enhances heat transfer for low frequencies and diminishes for high frequencies. Further, we found that rigid isothermal boundary conditions are diminishing heat transfer than free and isothermal boundaries. Finally, we concluded that rigid isothermal boundary conditions and gravity modulation controls heat transfer results.


Author(s):  
Jan Erik H. Weber ◽  
Peygham Ghaffari

AbstractThe mean drift in a porous seabed caused by long surface waves in the overlying fluid is investigated theoretically. We use a Lagrangian formulation for the fluid and the porous bed. For the wave field we assume inviscid flow, and in the seabed, we apply Darcy’s law. Throughout the analysis, we assume that the long-wave approximation is valid. Since the pressure gradient is nonlinear in the Lagrangian formulation, the balance of forces in the porous bed now contains nonlinear terms that yield the mean horizontal Stokes drift. In addition, if the waves are spatially damped due to interaction with the underlying bed, there must be a nonlinear balance in the fluid layer between the mean surface gradient and the gradient of the radiation stress. This causes, through continuity of pressure, an additional force in the porous layer. The corresponding drift is larger than the Stokes drift if the depth of the porous bed is more than twice that of the fluid layer. The interaction between the fluid layer and the seabed can also cause the waves to become temporally attenuated. Again, through nonlinearity, this leads to a horizontal Stokes drift in the porous layer, but now damped in time. In the long-wave approximation only the horizontal component of the permeability in the porous medium appears, so our analysis is valid for a medium that has different permeabilities in the horizontal and vertical directions. It is suggested that the drift results may have an application to the transport of microplastics in the porous oceanic seabed.


Author(s):  
Arestak Sarukhanyan ◽  
Norik Sarkisyan ◽  
Vache Tokmajyan ◽  
Arevshad Vartanyan

This paper presents the results of studying the motion of a liquid layer along the walls of a vertically installed pipe under the action of gravity. Two-dimensional boundary layer is formed by the fluid motion relative to the hard wall on surfaces of structures (pipes, turbines, heat-and-mass transfer equipment, aircrafts, ships, etc.), which are of positive interest in engineering practice. Further upgrading of the above-mentioned structures is possible only by increasing accuracy of momentum in the boundary layer, heat and mass transfer rates calculation. It is confirmed that in the boundary layer transfer phenomena intensity (perpendicular to the wall) is due to the fluid particles velocity distribution regularities in the cross-section of the layer. Fluid velocity distribution regularities in turn are conditioned by Reynolds number according to current notions. The principal method of quantitative analysis of turbulent flow in a boundary layer suggested by Reynolds continues to be the velocity and pressure fluctuations averaging method for some timespan. The suggested model of fluid movement enables to prognosticate conditions under which in cross-sections of the boundary layer reshaping of velocity profile takes place, to carry out analytic calculation of such hydrodynamic characteristics as mean velocity of motion, layer thickness and shearing stresses acting on the wall. The difference between the suggested methods developed for calculation of flow parameters from the well-known ones is in that that calculations are made based on an integrated approach regardless of such conceptual definitions as laminar and turbulent regimes widely used in modern hydrodynamics. Obtained results and design formulas known in the literature have been compared. It has been found that the thickness of the sliding layer, determine by the proposed calculation formula, 1.17 times smaller than that determined by the currently used formula


Sign in / Sign up

Export Citation Format

Share Document