Estimation of lower limb muscle activity during jumps by using a musculoskeletal simulation model

2020 ◽  
Vol 2020 (0) ◽  
pp. B-1-2
Author(s):  
Zeming JIN ◽  
Takeo MARUYAMA
2021 ◽  
Vol 89 ◽  
pp. 102-108
Author(s):  
Adam I. Semciw ◽  
Viji N. Visvalingam ◽  
Charlotte Ganderton ◽  
Peter Lawrenson ◽  
Paul W. Hodges ◽  
...  

2016 ◽  
Vol 50 ◽  
pp. 34-41 ◽  
Author(s):  
R. Gross ◽  
F. Leboeuf ◽  
M. Lempereur ◽  
T. Michel ◽  
B. Perrouin-Verbe ◽  
...  

2020 ◽  
Vol 6 ◽  
pp. 233372142097980
Author(s):  
Kenichi Kaneko ◽  
Hitoshi Makabe ◽  
Kazuyuki Mito ◽  
Kazuyoshi Sakamoto ◽  
Yoshiya Kawanori ◽  
...  

This study examined the characteristics of lower limb muscle activity in elderly persons after ergometric pedaling exercise for 1 month. To determine the effect of the exercise, surface electromyography (SEMG) of lower limb muscles was subjected to Daubechies-4 wavelet transformation, and mean wavelet coefficients were compared with the pre-exercise coefficients and the post-exercise coefficients in each wavelet level. The characteristics of muscle activity after pedaling exercise were also compared between the elderly subjects and young subjects. For the elderly subjects, the mean wavelet coefficients were significantly decreased in the tibialis anterior and the gastrocnemius medialis at wavelet levels of 3, 4, and 5 (125–62.5, 62.5–31.25, and 31.25–15.625 Hz, respectively), by pedaling exercise. However, the mean power of wavelet levels of 2 and 3 (250–125 and 125–62.5 Hz) within the rectus femoris and the biceps femoris were significantly increased in the young subjects. The effect of pedaling exercise is different from the effects of heavy-resistance training. It was suggested that the muscle coordination, motor unit (MU) firing frequency, and firing fiber type of lower limb muscles are changed with the different characteristics between elderly and young persons by pedaling exercise for 1 month.


Sign in / Sign up

Export Citation Format

Share Document