activity patterns
Recently Published Documents





2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Fiona Yu ◽  
Alana Cavadino ◽  
Lisa Mackay ◽  
Kim Ward ◽  
Anna King ◽  

PurposeLimited evidence exists regarding a group of nurses' physical activity patterns and association with resilience. Less is known about the physical activity health paradox in nurses (the positive health effects of leisure time physical activity vs the negative health effects of occupational physical activity). This study aimed to explore the profiles of intensive care nurses' physical activity behaviours and associations with resilience, following a developed study-specific job demands–recovery framework.Design/methodology/approachA cross-sectional study was conducted with intensive care unit (ICU) nurses to explore their physical activity profiles and associations with resilience. The Connor-Davidson Resilience Scale 25 (CD-RISC 25) was used to assess resilience, and accelerometry was utilised to record participants' four-day activity (two workdays, two non-workdays). Hierarchical cluster analysis was employed to define groups of nurses by activity behaviours.FindingsParticipants (N = 93) were classified as low actives (n = 19), standers (n = 36), sitters (n = 31) and movers (n = 7). During two 12-h shifts, movers had the highest mean level of dynamic standing and the lowest mean level of sitting. During two non-workdays, movers had the highest mean level of walking as well as the lowest mean level of sitting and sleep time.Originality/valueThe uniqueness of this study was that it analysed ICU nurses' physical activity profiles and associations with resilience using identified clusters. However, the small number of participants limited this study's ability to determine significant relationships between resilience and the grouped physical activity profiles.

Oecologia ◽  
2022 ◽  
Rachel Y. Chock ◽  
Debra M. Shier ◽  
Gregory F. Grether

AbstractCoexistence of competing species in the same foraging guild has long puzzled ecologists. In particular, how do small subordinate species persist with larger dominant competitors? This question becomes particularly important when conservation interventions, such as reintroduction or translocation, become necessary for the smaller species. Exclusion of dominant competitors might be necessary to establish populations of some endangered species. Ultimately, however, the goal should be to conserve whole communities. Determining how subordinate species escape competitive exclusion in intact communities could inform conservation decisions by clarifying the ecological conditions and processes required for coexistence at local or regional scales. We tested for spatial and temporal partitioning among six species of native, granivorous rodents using null models, and characterized the microhabitat of each species using resource-selection models. We found that the species’ nightly activity patterns are aggregated temporally but segregated spatially. As expected, we found clear evidence that the larger-bodied kangaroo rats drive spatial partitioning, but we also found species-specific microhabitat associations, which suggests that habitat heterogeneity is part of what enables these species to coexist. Restoration of natural disturbance regimes that create habitat heterogeneity, and selection of translocation sites without specific competitors, are among the management recommendations to consider in this case. More generally, this study highlights the need for a community-level approach to conservation and the usefulness of basic ecological data for guiding management decisions.

2022 ◽  
Vol 12 ◽  
Auriana Irannejad ◽  
Ganne Chaitanya ◽  
Emilia Toth ◽  
Diana Pizarro ◽  
Sandipan Pati

Accurate mapping of the seizure onset zone (SOZ) is critical to the success of epilepsy surgery outcomes. Epileptogenicity index (EI) is a statistical method that delineates hyperexcitable brain regions involved in the generation and early propagation of seizures. However, EI can overestimate the SOZ for particular electrographic seizure onset patterns. Therefore, using direct cortical stimulation (DCS) as a probing tool to identify seizure generators, we systematically evaluated the causality of the high EI nodes (>0.3) in replicating the patient's habitual seizures. Specifically, we assessed the diagnostic yield of high EI nodes, i.e., the proportion of high EI nodes that evoked habitual seizures. A retrospective single-center study that included post-stereo encephalography (SEEG) confirmed TLE patients (n = 37) that had all high EI nodes stimulated, intending to induce a seizure. We evaluated the nodal responses (true and false responder rate) to stimulation and correlated with electrographic seizure onset patterns (hypersynchronous-HYP and low amplitude fast activity patterns-LAFA) and clinically defined SOZ. The ictogenicity (i.e., the propensity to induce the patient's habitual seizure) of a high EI node was only 44.5%. The LAFA onset pattern had a significantly higher response rate to DCS (i.e., higher evoked seizures). The concordance of an evoked habitual seizure with a clinically defined SOZ with good outcomes was over 50% (p = 0.0025). These results support targeted mapping of SOZ in LAFA onset patterns by performing DCS in high EI nodes to distinguish seizure generators (true responders) from hyperexcitable nodes that may be involved in early propagation.

eLife ◽  
2022 ◽  
Vol 11 ◽  
Giacomo Ariani ◽  
J Andrew Pruszynski ◽  
Jörn Diedrichsen

Motor planning plays a critical role in producing fast and accurate movement. Yet, the neural processes that occur in human primary motor and somatosensory cortex during planning, and how they relate to those during movement execution, remain poorly understood. Here we used 7T functional magnetic resonance imaging (fMRI) and a delayed movement paradigm to study single finger movement planning and execution. The inclusion of no-go trials and variable delays allowed us to separate what are typically overlapping planning and execution brain responses. Although our univariate results show widespread deactivation during finger planning, multivariate pattern analysis revealed finger-specific activity patterns in contralateral primary somatosensory cortex (S1), which predicted the planned finger action. Surprisingly, these activity patterns were as informative as those found in contralateral primary motor cortex (M1). Control analyses ruled out the possibility that the detected information was an artifact of subthreshold movements during the preparatory delay. Furthermore, we observed that finger-specific activity patterns during planning were highly correlated to those during execution. These findings reveal that motor planning activates the specific S1 and M1 circuits that are engaged during the execution of a finger press, while activity in both regions is overall suppressed. We propose that preparatory states in S1 may improve movement control through changes in sensory processing or via direct influence of spinal motor neurons.

Animals ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 176
Eva Mainau ◽  
Pol Llonch ◽  
Déborah Temple ◽  
Laurent Goby ◽  
Xavier Manteca

The main conditions and diseases considered painful in dairy cows are mastitis, lameness, calving (including dystocia and caesarean section) and metritis. The cattle literature reports that deviation from normal daily activity patterns (both increased and/or reduced daily lying time) can be indicative of painful conditions and diseases in cows. This narrative review discusses on how pain due to several health conditions in dairy cows modifies its activity pattern and explores if non-steroidal anti-inflammatory drugs (NSAIDs) are capable of restoring it. Divergent outcomes may differ depending upon the painful cause, the severity and the moment, and consequently its interpretation should be properly explained. For instance, cows with clinical mastitis reduced their time lying and increased the number of lying bouts and stepping due to pain caused by the swollen udder when cows are lying. However, lame cows show longer lying times, with a lower number of lying bouts and longer and more variable lying bouts duration, as compared to non-lame cows. When the relationship between painful disorders and daily activity patterns is studied, factors such as parity, bedding type and severity of disease are important factors to take into consideration. The potential benefits of the NSAIDs treatment in painful health disorders depend upon the type of drug administered, its dosage and administration mode, and the time of administration relative to the painful health disorder. This narrative review can be used as a tool to properly interpret and grade pain in cows through behavioural activity patterns and proposes directions for future investigations.

2022 ◽  
Vol 23 (1) ◽  
Noemi Meylakh ◽  
Luke A. Henderson

Abstract Background Migraine is a neurological disorder characterized by intense, debilitating headaches, often coupled with nausea, vomiting and sensitivity to light and sound. Whilst changes in sensory processes during a migraine attack have been well-described, there is growing evidence that even between migraine attacks, sensory abilities are disrupted in migraine. Brain imaging studies have investigated altered coupling between areas of the descending pain modulatory pathway but coupling between somatosensory processing regions between migraine attacks has not been properly studied. The aim of this study was to determine if ongoing functional connectivity between visual, auditory, olfactory, gustatory and somatosensory cortices are altered during the interictal phase of migraine. Methods To explore the neural mechanisms underpinning interictal changes in sensory processing, we used functional magnetic resonance imaging to compare resting brain activity patterns and connectivity in migraineurs between migraine attacks (n = 32) and in healthy controls (n = 71). Significant differences between groups were determined using two-sample random effects procedures (p < 0.05, corrected for multiple comparisons, minimum cluster size 10 contiguous voxels, age and gender included as nuisance variables). Results In the migraine group, increases in infra-slow oscillatory activity were detected in the right primary visual cortex (V1), secondary visual cortex (V2) and third visual complex (V3), and left V3. In addition, resting connectivity analysis revealed that migraineurs displayed significantly enhanced connectivity between V1 and V2 with other sensory cortices including the auditory, gustatory, motor and somatosensory cortices. Conclusions These data provide evidence for a dysfunctional sensory network in pain-free migraine patients which may be underlying altered sensory processing between migraine attacks.

2022 ◽  
Vesa Juhani Putkinen ◽  
Sanaz Nazari-Farsani ◽  
Tomi Karjalainen ◽  
Severi Santavirta ◽  
Matthew Hudson ◽  

Sex differences in brain activity evoked by sexual stimuli remain elusive despite robust evidence for stronger enjoyment of and interest towards sexual stimuli in men than in women. To test whether visual sexual stimuli evoke different brain activity patterns in men and women, we measured haemodynamic brain activity induced by visual sexual stimuli in two experiments in 91 subjects (46 males). In one experiment, the subjects viewed sexual and non-sexual film clips and dynamic annotations for nudity in the clips was used to predict their hemodynamic activity. In the second experiment, the subjects viewed sexual and non-sexual pictures in an event-related design. Males showed stronger activation than females in the visual and prefrontal cortices and dorsal attention network in both experiments. Furthermore, using multivariate pattern classification we could accurately predict the sex of the subject on the basis of the brain activity elicited by the sexual stimuli. The classification generalized across the experiments indicating that the sex differences were consistent across the experiments. Eye tracking data obtained from an independent sample of subjects (N = 110) showed that men looked longer than women at the chest area of the nude female actors in the film clips. These results indicate that visual sexual stimuli evoke discernible brain activity patterns in men and women which may reflect stronger attentional engagement with sexual stimuli in men than women.

2022 ◽  
Vol 12 (1) ◽  
Ivana Gabriela Schork ◽  
Isabele Aparecida Manzo ◽  
Marcos Roberto Beiral De Oliveira ◽  
Fernanda Vieira da Costa ◽  
Robert John Young ◽  

AbstractSleep deprivation has been found to negatively affect an individual´s physical and psychological health. Sleep loss affects activity patterns, increases anxiety-like behaviors, decreases cognitive performance and is associated with depressive states. The activity/rest cycle of dogs has been investigated before, but little is known about the effects of sleep loss on the behavior of the species. Dogs are polyphasic sleepers, meaning the behavior is most observed at night, but bouts are also present during the day. However, sleep can vary with ecological and biological factors, such as age, sex, fitness, and even human presence. In this study, kennelled laboratory adult dogs’ sleep and diurnal behavior were recorded during 24-h, five-day assessment periods to investigate sleep quality and its effect on daily behavior. In total, 1560 h of data were analyzed, and sleep metrics and diurnal behavior were quantified. The relationship between sleeping patterns and behavior and the effect of age and sex were evaluated using non-parametric statistical tests and GLMM modelling. Dogs in our study slept substantially less than previously reported and presented a modified sleep architecture with fewer awakenings during the night and almost no sleep during the day. Sleep loss increased inactivity, decreased play and alert behaviors, while increased time spent eating during the day. Males appeared to be more affected by sleep fragmentation than females. Different age groups also experienced different effects of sleep loss. Overall, dogs appear to compensate for the lack of sleep during the night by remaining inactive during the day. With further investigations, the relationship between sleep loss and behavior has the potential to be used as a measure of animal welfare.

Entropy ◽  
2022 ◽  
Vol 24 (1) ◽  
pp. 107
Santosh Manicka ◽  
Michael Levin

What information-processing strategies and general principles are sufficient to enable self-organized morphogenesis in embryogenesis and regeneration? We designed and analyzed a minimal model of self-scaling axial patterning consisting of a cellular network that develops activity patterns within implicitly set bounds. The properties of the cells are determined by internal ‘genetic’ networks with an architecture shared across all cells. We used machine-learning to identify models that enable this virtual mini-embryo to pattern a typical axial gradient while simultaneously sensing the set boundaries within which to develop it from homogeneous conditions—a setting that captures the essence of early embryogenesis. Interestingly, the model revealed several features (such as planar polarity and regenerative re-scaling capacity) for which it was not directly selected, showing how these common biological design principles can emerge as a consequence of simple patterning modes. A novel “causal network” analysis of the best model furthermore revealed that the originally symmetric model dynamically integrates into intercellular causal networks characterized by broken-symmetry, long-range influence and modularity, offering an interpretable macroscale-circuit-based explanation for phenotypic patterning. This work shows how computation could occur in biological development and how machine learning approaches can generate hypotheses and deepen our understanding of how featureless tissues might develop sophisticated patterns—an essential step towards predictive control of morphogenesis in regenerative medicine or synthetic bioengineering contexts. The tools developed here also have the potential to benefit machine learning via new forms of backpropagation and by leveraging the novel distributed self-representation mechanisms to improve robustness and generalization.

Nicholas Hoernle ◽  
Gregory Kehne ◽  
Ariel D. Procaccia ◽  
Kobi Gal

AbstractVirtual rewards, such as badges, are commonly used in online platforms as incentives for promoting contributions from a userbase. It is widely accepted that such rewards “steer” people’s behaviour towards increasing their rate of contributions before obtaining the reward. This paper provides a new probabilistic model of user behaviour in the presence of threshold rewards, such a badges. We find, surprisingly, that while steering does affect a minority of the population, the majority of users do not change their behaviour around the achievement of these virtual rewards. In particular, we find that only approximately 5–30% of Stack Overflow users who achieve the rewards appear to respond to the incentives. This result is based on the analysis of thousands of users’ activity patterns before and after they achieve the reward. Our conclusion is that the phenomenon of steering is less common than has previously been claimed. We identify a statistical phenomenon, termed “Phantom Steering”, that can account for the interaction data of the users who do not respond to the reward. The presence of phantom steering may have contributed to some previous conclusions about the ubiquity of steering. We conduct a qualitative survey of the users on Stack Overflow which supports our results, suggesting that the motivating factors behind user behaviour are complex, and that some of the online incentives used in Stack Overflow may not be solely responsible for changes in users’ contribution rates.

Sign in / Sign up

Export Citation Format

Share Document