F145 DNS of turbulent heat transfer in a channel flow with high spatial resolution for various Prandtl numbers

2006 ◽  
Vol 2006 (0) ◽  
pp. 221-222
Author(s):  
Yohji Seki ◽  
Kaoru Iwamoto ◽  
Hiroshi Kawamura
Author(s):  
Kyoungyoun Kim ◽  
Radhakrishna Sureshkumar

A direct numerical simulation (DNS) of viscoelastic turbulent channel flow with the FENE-P model was carried out to investigate turbulent heat transfer mechanism of polymer drag-reduced flows. The configuration was a fully-developed turbulent channel flow with uniform heat flux imposed on both walls. The temperature was considered as a passive scalar. The Reynolds number based on the friction velocity (uτ) and channel half height (δ) is 125 and Prandtl number is 5. Consistently with the previous experimental observations, the present DNS results show that the heat-transfer coefficient was reduced at a rate faster than the accompanying drag reduction rate. Statistical quantities such as root-mean-square temperature fluctuations and turbulent heat fluxes were obtained and compared with those of a Newtonian fluid flow. Budget terms of the turbulent heat fluxes were also presented.


Sign in / Sign up

Export Citation Format

Share Document