high spatial resolution
Recently Published Documents


TOTAL DOCUMENTS

4469
(FIVE YEARS 1084)

H-INDEX

96
(FIVE YEARS 14)

Author(s):  
Zujun Qin ◽  
Yiwei Hu ◽  
Yaoli Yue ◽  
Chao Tan

Abstract Optical frequency-domain reflectometer (OFDR) has been widely used in vibration detection because of its unique advantages of simple configuration and high spatial resolution. Based on remote fiber amplification, an unrepeatered OFDR is experimentally investigated for vibration monitoring. To locate the vibration, we present an algorithm by calculating segmental cross-correlation between the beating signals with and without disturbances on the sensing fiber. It is shown that the OFDR demonstrates the ability of detecting the vibration over 222 km testing distance (112 km + 110 km). After sensing the first spool fiber of 112 km, the remnant laser is amplified by a remote-pumped EDFA before proceeding to probe the vibration in the second spool one of 110 km. To be specific, the PZT-induced vibrations positioned at z=110.9 km and z=220.9 km are both detected. More importantly, the OFDR system can be extended to operate in bi-directional sensing mode and to double detection range from 200 km to 400 km.


2022 ◽  
Vol 14 (2) ◽  
pp. 310
Author(s):  
Qi Wu ◽  
Shiqi Miao ◽  
Haili Huang ◽  
Mao Guo ◽  
Lei Zhang ◽  
...  

The coastline situation reflects socioeconomic development and ecological environment in coastal zones. Analyzing coastline changes clarifies the current coastline situation and provides a scientific basis for making environmental protection policies, especially for coastlines with significant human interference. As human activities become more intense, coastline types and their dynamic changes become more complicated, which needs more detailed identification of coastlines. High spatial resolution images can help provide detailed large spatial coverage at high resolution information on coastal zones. This study aims to map the position and status of the Yangtze River Delta (YRD) coastline using an NDWI threshold method based on 2 m Gaofen-1/Ziyuan-3 imagery and analyze coastline change and coastline type distribution characteristics. The results showed that natural and artificial coastlines in the YRD region accounted for 42.73% and 57.27% in 2013 and 41.56% and 58.44% in 2018, respectively. The coastline generally advanced towards the sea, causing a land area increase of 475.62 km2. The changes in the YRD coastline mainly resulted from a combination of large-scale artificial construction and natural factors such as silt deposition. This study provides a reference source for large spatial coverage at high resolution remote sensing coastline monitoring and a better understanding of land use in coastal zone.


2022 ◽  
Vol 14 (2) ◽  
pp. 305
Author(s):  
Qi Diao ◽  
Yaping Dai ◽  
Ce Zhang ◽  
Yan Wu ◽  
Xiaoxue Feng ◽  
...  

Semantic segmentation is one of the significant tasks in understanding aerial images with high spatial resolution. Recently, Graph Neural Network (GNN) and attention mechanism have achieved excellent performance in semantic segmentation tasks in general images and been applied to aerial images. In this paper, we propose a novel Superpixel-based Attention Graph Neural Network (SAGNN) for semantic segmentation of high spatial resolution aerial images. A K-Nearest Neighbor (KNN) graph is constructed from our network for each image, where each node corresponds to a superpixel in the image and is associated with a hidden representation vector. On this basis, the initialization of the hidden representation vector is the appearance feature extracted by a unary Convolutional Neural Network (CNN) from the image. Moreover, relying on the attention mechanism and recursive functions, each node can update its hidden representation according to the current state and the incoming information from its neighbors. The final representation of each node is used to predict the semantic class of each superpixel. The attention mechanism enables graph nodes to differentially aggregate neighbor information, which can extract higher-quality features. Furthermore, the superpixels not only save computational resources, but also maintain object boundary to achieve more accurate predictions. The accuracy of our model on the Potsdam and Vaihingen public datasets exceeds all benchmark approaches, reaching 90.23% and 89.32%, respectively.


2022 ◽  
Author(s):  
Qi Zheng ◽  
Rong Yang ◽  
Kang Wu ◽  
Xiao Lin ◽  
Shixuan Du ◽  
...  

Abstract We report a facile phase conversion method that can locally convert n-type SnSe2 into p-type SnSe by direct laser irradiation. Raman spectra of SnSe2 flakes before and after laser irradiation confirm the phase conversion of SnSe2 to SnSe. By performing the laser irradiation on SnSe2 flakes at different temperatures, it is found that laser heating effect induces the removal of Se atoms from SnSe2 and results in the phase conversion of SnSe2 to SnSe. Lattice-revolved transmission electron microscope images of SnSe2 flakes before and after laser irradiation further confirm such conversion. By selective laser irradiation on SnSe2 flakes, a pattern with SnSe2/SnSe heteostructures is created. This indicates that the laser induced phase conversion technique has relatively high spatial resolution and enables the creation of micron-sized in-plane p-n junction at predefined region.


2022 ◽  
Vol 14 (2) ◽  
pp. 249
Author(s):  
Zhibin Liu ◽  
Tie Liu ◽  
Yue Huang ◽  
Yangchao Duan ◽  
Xiaohui Pan ◽  
...  

The intensity of agricultural activities and the characteristics of water consumption affect the hydrological processes of inland river basins in Central Asia. The crop water requirements and water productivity are different between the Amu Darya and Syr Darya river basins due to the different water resource development and utilization policies of Uzbekistan and Kazakhstan, which have resulted in more severe agricultural water consumption of the Amu Darya delta than the Syr Darya delta, and the differences in the surface runoff are injected into the Aral Sea. To reveal the difference in water resource dissipation, water productivity, and its influencing factors between the two basins, this study selected the irrigation areas of Amu Darya delta (IAAD) and Syr Darya delta (IASD) as typical examples; the actual evapotranspiration (ETa) was retrieved by using the modified surface energy balance algorithm for land model (SEBAL) based on high spatial resolution Landsat images from 2000 to 2020. Land use and cover change (LUCC) and streamflow data were obtained to analyze the reasons for the spatio-temporal heterogeneity of regional ETa. The water productivity of typical crops in two irrigation areas was compared and combined with statistical data. The results indicate that: (1) the ETa simulated by the SEBAL model matched the crop evapotranspiration (ETc) calculated by the Penman–Monteith method and ground-measured data well, with all the correlation coefficients higher than 0.7. (2) In IAAD, the average ETa was 1150 mm, and the ETa had shown a decreasing trend; for the IASD, the average ETa was 800 mm. The ETa showed an increasing trend with low stability due to a large amount of developable cultivated land. The change of cultivated land dominated the spatio-temporal characteristics of ETa in the two irrigation areas (3). Combined with high spatial resolution ETa inversion results, the water productivity of cotton and rice in IAAD was significantly lower than in IASD, and wheat was not significantly different, but all were far lower than the international average. This study can provide useful information for agricultural water management in the Aral Sea region.


2022 ◽  
Vol 17 (1) ◽  
Author(s):  
Chien-Ping Wang ◽  
Burn Jeng Lin ◽  
Pin-Jiun Wu ◽  
Jiaw-Ren Shih ◽  
Yue-Der Chih ◽  
...  

AbstractAn on-wafer micro-detector for in situ EUV (wavelength of 13.5 nm) detection featuring FinFET CMOS compatibility, 1 T pixel and battery-less sensing is demonstrated. Moreover, the detection results can be written in the in-pixel storage node for days, enabling off-line and non-destructive reading. The high spatial resolution micro-detectors can be used to extract the actual parameters of the incident EUV on wafers, including light intensity, exposure time and energy, key to optimization of lithographic processes in 5 nm FinFET technology and beyond.


Sign in / Sign up

Export Citation Format

Share Document