turbulence statistics
Recently Published Documents


TOTAL DOCUMENTS

299
(FIVE YEARS 42)

H-INDEX

37
(FIVE YEARS 5)

2022 ◽  
Vol 128 (2) ◽  
Author(s):  
Martin Oberlack ◽  
Sergio Hoyas ◽  
Stefanie V. Kraheberger ◽  
Francisco Alcántara-Ávila ◽  
Jonathan Laux

2021 ◽  
Vol 933 ◽  
Author(s):  
Kengo Fukushima ◽  
Haruki Kishi ◽  
Hiroshi Suzuki ◽  
Ruri Hidema

An experimental study is performed to investigate the effects of the extensional rheological properties of drag-reducing wormlike micellar solutions on the vortex deformation and turbulence statistics in two-dimensional (2-D) turbulent flow. A self-standing 2-D turbulent flow was used as the experimental set-up, and the flow was observed through interference pattern monitoring and particle image velocimetry. Vortex shedding and turbulence statistics in the flow were affected by the formation of wormlike micelles and were enhanced by increasing the molar ratio of the counter-ion supplier to the surfactant, ξ, or by applying extensional stresses to the solution. In the 2-D turbulent flow, extensional and shear rates were applied to the fluids around a comb of equally spaced cylinders. This induced the formation of a structure made of wormlike micelles just behind the cylinder. The flow-induced structure influenced the velocity fields around the comb and the turbulence statistics. A characteristic increase in turbulent energy was observed, which decreased slowly downstream. The results implied that the characteristic modification of the 2-D turbulent flow of the drag-reducing surfactant solution was affected by the formation and slow relaxation of the flow-induced structure. The relaxation process of the flow-induced structure made of wormlike micelles was very different from that of the polymers.


2021 ◽  
Vol 11 (14) ◽  
pp. 6472
Author(s):  
Maxime Stuck ◽  
Alvaro Vidal ◽  
Pablo Torres ◽  
Hassan M. Nagib ◽  
Candace Wark ◽  
...  

The mean flow and turbulence statistics of the flow through a simplified urban environment, which is an active research area in order to improve the knowledge of turbulent flow in cities, is investigated. This is useful for civil engineering, pedestrian comfort and for health concerns caused by pollutant spreading. In this work, we provide analysis of the turbulence statistics obtained from well-resolved large-eddy simulations (LES). A detailed analysis of this database reveals the impact of the geometry of the urban array on the flow characteristics and provides for a good description of the turbulent features of the flow within a simplified urban environment. The most prominent features of this complex flow include coherent vortical structures such as the so-called arch vortex, the horseshoe vortex and the roof vortex. These structures of flow have been identified by an analysis of the turbulence statistics. The influence of the geometry of urban environment (and particularly the street width and the building height) on the overall flow behavior has also been studied. Finally, the well-resolved LES results were compared with an available experimental database to discuss differences and similarities between the respective urban configurations.


Author(s):  
Maxime Stuck ◽  
Alvaro Vidal ◽  
Pablo Torres ◽  
Hassan M. Nagib ◽  
Candace Wark ◽  
...  

The mean flow and turbulence statistics of the flow through a simplified urban environment, which is an active research area in order to improve the knowledge of turbulent flow in cities, is investigated. This is useful for civil engineering, pedestrian comfort and for health concerns caused by pollutant spreading. In this work, we provide analysis of the turbulence statistics obtained from well-resolved large-eddy simulations (LES). A detailed analysis of this database reveals the impact of the geometry of the urban array on the flow characteristics and provides for a good description of the turbulent features of the flow within a simplified urban environment. The most prominent features of this complex flow include coherent vortical structures such as the so-called arch vortex, the horseshoe vortex and the roof vortex. These structures of the flow have been identified by an analysis of the turbulence statistics. The influence of the geometry of the urban environment (and particularly the street width and the building height) on the overall flow behavior have also been studied. Finally, the well-resolved LES results were compared with the experimental database from Monnier et al. to discuss differences and similarities between the respective urban configurations.


2021 ◽  
Vol 62 (5) ◽  
Author(s):  
M. E. Morsy ◽  
J. Yang

Abstract Particle image velocimetry (PIV) has become a popular non-intrusive tool for measuring various types of flows. However, when measuring three-dimensional flows with two-dimensional (2D) PIV, there are some uncertainties in the measured velocity field due to out-of-plane motion, which might alter turbulence statistics and distort the overall flow characteristics. In the present study, three different turbulence models are employed and compared. Mean and fluctuating fields obtained by three-dimensional computational fluid dynamics modeling are compared to experimental data. Turbulence statistics such as integral length scale, Taylor microscale, Kolmogorov scale, turbulence kinetic energy, dissipation rate, and velocity correlations are calculated at different experimental conditions (i.e., pressure, temperature, fan speed, etc.). A reasonably isotropic and homogeneous turbulence with large turbulence intensities is achieved in the central region extending to almost 45 mm radius. This radius decreases with increasing the initial pressure. The influence of the third dimension velocity component on the measured characteristics is negligible. This is a result of the axisymmetric features of the flow pattern in the current vessel. The results prove that the present vessel can be conveniently adopted for several turbulent combustion studies including mainly the determination of turbulent burning velocity for gaseous premixed flames in nearly homogeneous isotropic turbulence. Graphic abstract


2021 ◽  
Vol 14 (3) ◽  
pp. 2409-2427
Author(s):  
Olli Peltola ◽  
Karl Lapo ◽  
Ilkka Martinkauppi ◽  
Ewan O'Connor ◽  
Christoph K. Thomas ◽  
...  

Abstract. The suitability of a fibre-optic distributed temperature sensing (DTS) technique for observing atmospheric mixing profiles within and above a forest was quantified, and these profiles were analysed. The spatially continuous observations were made at a 125 m tall mast in a boreal pine forest. Airflows near forest canopies diverge from typical boundary layer flows due to the influence of roughness elements (i.e. trees) on the flow. Ideally, these complex flows should be studied with spatially continuous measurements, yet such measurements are not feasible with conventional micrometeorological measurements with, for example, sonic anemometers. Hence, the suitability of DTS measurements for studying canopy flows was assessed. The DTS measurements were able to discern continuous profiles of turbulent fluctuations and mean values of air temperature along the mast, providing information about mixing processes (e.g. canopy eddies and evolution of inversion layers at night) and up to third-order turbulence statistics across the forest–atmosphere interface. Turbulence measurements with 3D sonic anemometers and Doppler lidar at the site were also utilised in this analysis. The continuous profiles for turbulence statistics were in line with prior studies made at wind tunnels and large eddy simulations for canopy flows. The DTS measurements contained a significant noise component which was, however, quantified, and its effect on turbulence statistics was accounted for. Underestimation of air temperature fluctuations at high frequencies caused 20 %–30 % underestimation of temperature variance at typical flow conditions. Despite these limitations, the DTS measurements should prove useful also in other studies concentrating on flows near roughness elements and/or non-stationary periods, since the measurements revealed spatio-temporal patterns of the flow which were not possible to be discerned from single point measurements fixed in space.


2021 ◽  
pp. 2150193
Author(s):  
Peifeng Lin ◽  
Pu Wang ◽  
Yong Zhou ◽  
Xiaojun Li

A new type of nonlinear sub-grid scale (SGS) model is adopted based on the helicity analysis and is verified by predicting the internal flow in a rotating channel. A stress term that contains helicity constraint is introduced into the original SGS model to construct a nonlinear sub-grid model. This additional term representing the helicity constraint effect in the momentum equations is shown to give predictions that are in better agreement with the experimental data. In this paper, the Detached-Eddy Simulation (DES) and the nonlinear SGS model are used to further study the turbulence statistics of the rotating channel flow. Combining with the Reynolds stress transport equations and the turbulent kinetic energy transport equation, the change of turbulence statistics near the wall of the rotating channel is analyzed. The newly added term changes the turbulent viscosity near the wall, which changes the velocity gradient near the wall and further affects other turbulence statistics near the wall.


Fluids ◽  
2021 ◽  
Vol 6 (2) ◽  
pp. 72
Author(s):  
Nadish Saini ◽  
Igor A. Bolotnov

In the dispersed flow film boiling regime (DFFB), which exists under post-LOCA (loss-of-coolant accident) conditions in pressurized water reactors (PWRs), there is a complex interplay between droplet dynamics and turbulence in the surrounding steam. Experiments have accredited particular significance to droplet collision with the spacer-grids and mixing vane structures and their consequent positive feedback to the heat transfer recorded in the immediate downstream vicinity. Enabled by high-performance computing (HPC) systems and a massively parallel finite element-based flow solver—PHASTA (Parallel Hierarchic Adaptive Stabilized Transient Analysis)—this work presents high fidelity interface capturing, two-phase, adiabatic simulations in a PWR sub-channel with spacer grids and mixing vanes. Selected flow conditions for the simulations are informed by the experimental data found in the literature, including the steam Reynolds number and collision Weber number (Wec={40,80}), and are characteristic of the DFFB regime. Data were collected from the simulations at an unprecedented resolution, which provides detailed insights into the continuous phase turbulence statistics, highlighting the effects of the presence of droplets and the comparative effect of different Weber numbers on turbulence in the surrounding steam. Further, axial evolution of droplet dynamics was analyzed through cross-sectionally averaged quantities, including droplet volume, surface area and Sauter mean diameter (SMD). The downstream SMD values agree well with the existing empirical correlations for the selected range of Wec. The high-resolution data repository from the simulations herein is expected to be of significance to guide model development for system-level thermal hydraulic codes.


Sign in / Sign up

Export Citation Format

Share Document