scholarly journals Linearization Method of Nonlinear Source Term.

1993 ◽  
Vol 59 (559) ◽  
pp. 827-832
Author(s):  
Takeo Maeda
2012 ◽  
Vol 2012 ◽  
pp. 1-25 ◽  
Author(s):  
Y. J. Choi ◽  
S. K. Chung

We consider finite element Galerkin solutions for the space fractional diffusion equation with a nonlinear source term. Existence, stability, and order of convergence of approximate solutions for the backward Euler fully discrete scheme have been discussed as well as for the semidiscrete scheme. The analytical convergent orders are obtained asO(k+hγ˜), whereγ˜is a constant depending on the order of fractional derivative. Numerical computations are presented, which confirm the theoretical results when the equation has a linear source term. When the equation has a nonlinear source term, numerical results show that the diffusivity depends on the order of fractional derivative as we expect.


Mathematics ◽  
2021 ◽  
Vol 9 (23) ◽  
pp. 3050
Author(s):  
Sarita Nandal ◽  
Mahmoud A. Zaky ◽  
Rob H. De Staelen ◽  
Ahmed S. Hendy

The purpose of this paper is to develop a numerical scheme for the two-dimensional fourth-order fractional subdiffusion equation with variable coefficients and delay. Using the L2−1σ approximation of the time Caputo derivative, a finite difference method with second-order accuracy in the temporal direction is achieved. The novelty of this paper is to introduce a numerical scheme for the problem under consideration with variable coefficients, nonlinear source term, and delay time constant. The numerical results show that the global convergence orders for spatial and time dimensions are approximately fourth order in space and second-order in time.


Sign in / Sign up

Export Citation Format

Share Document