scholarly journals The Effect of the Gas-Liquid Density Ratio on the Liquid Film Thickness in Vertical Upward Annular Flow(Thermal Engineering)

2010 ◽  
Vol 76 (772) ◽  
pp. 2168-2177
Author(s):  
Shoji MORI ◽  
Kunito OKUYAMA
Author(s):  
Hiroshi Kanno ◽  
Youngbae Han ◽  
Yusuke Saito ◽  
Naoki Shikazono

Heat transfer in micro scale two-phase flow attracts large attention since it can achieve large heat transfer area per density. At high quality, annular flow becomes one of the major flow regimes in micro two-phase flow. Heat is transferred by evaporation or condensation of the liquid film, which are the dominant mechanisms of micro scale heat transfer. Therefore, liquid film thickness is one of the most important parameters in modeling the phenomena. In macro tubes, large numbers of researches have been conducted to investigate the liquid film thickness. However, in micro tubes, quantitative information for the annular liquid film thickness is still limited. In the present study, annular liquid film thickness is measured using a confocal method, which is used in the previous study [1, 2]. Glass tubes with inner diameters of 0.3, 0.5 and 1.0 mm are used. Degassed water and FC40 are used as working fluids, and the total mass flux is varied from G = 100 to 500 kg/m2s. Liquid film thickness is measured by laser confocal displacement meter (LCDM), and the liquid-gas interface profile is observed by a high-speed camera. Mean liquid film thickness is then plotted against quality for different flow rates and tube diameters. Mean thickness data is compared with the smooth annular film model of Revellin et al. [3]. Annular film model predictions overestimated the experimental values especially at low quality. It is considered that this overestimation is attributed to the disturbances caused by the interface ripples.


2015 ◽  
Vol 73 ◽  
pp. 264-274 ◽  
Author(s):  
Youngbae Han ◽  
Hiroshi Kanno ◽  
Young-Ju Ahn ◽  
Naoki Shikazono

2021 ◽  
Author(s):  
Antai Liu ◽  
Haifeng Gu ◽  
Fuqiang Zhu ◽  
Changqi Yan

Abstract As a key physical parameter in annular flow, liquid film thickness is crucial to study the behavior characteristics about gas-liquid interface under annular flow conditions. In this study, the narrow rectangular channel is taken as the research object, and air-water were used as the media to conduct annular flow experiments under atmospheric pressure. The cross-sectional area of the narrow rectangular channel is 70mm × 2mm. The PCB liquid film sensor can realize multi-point measurement of liquid film thickness. A total of 10 × 16 measuring points are arranged in rows and columns on the surface of the channel, with a spatial resolution of 4.4mm × 4.4mm and a measurement speed of 1000 frames per second. The results show the fluctuation of liquid film is dominated by the ripple wave at low superficial liquid velocity. The frequency distribution of film thickness becomes sharper because of the increase of gas flow, i.e. the interfacial surface becomes smoother. The liquid film will become thinner with the increase of gas flow, but the effect is reduced when the gas flow reaches a certain value. The liquid film will thicken and the number of disturbance waves will increase as the increase of the liquid flow.


Sign in / Sign up

Export Citation Format

Share Document