scholarly journals The vibration characteristics of steam turbine blades (2nd report, A method for calculating resonant conditions and resonant stresses of bladed-disk vibration)

1986 ◽  
Vol 52 (474) ◽  
pp. 724-729
Author(s):  
Kiyoshi NAMURA
2007 ◽  
Vol 41 (5) ◽  
pp. 295-301
Author(s):  
A. I. Danilin ◽  
S. I. Adamov ◽  
A. Zh. Chernyavskii ◽  
M. I. Serpokrylov

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Dingjun Li ◽  
Peng Jiang ◽  
Fan Sun ◽  
Xiaohu Yuan ◽  
Jianpu Zhang ◽  
...  

Abstract The water-droplet erosion of low-pressure steam turbine blades under wet steam environments can alter the vibration characteristics of the blade, and lead to its premature failure. Using high-velocity oxygen-fuel (HVOF) sprayed water-droplet erosion resistant coating is beneficial in preventing the erosion failure, while the erosion behavior of such coatings is still not revealed so far. Here, we examined the water-droplet erosion resistance of Cr3C2–25NiCr and WC–10Co–4Cr HVOF sprayed coatings using a pulsed water jet device with different impingement angles. Combined with microscopic characterization, indentation, and adhesion tests, we found that: (1) both of the coatings exhibited a similar three-stage erosion behavior, from the formation of discrete erosion surface cavities and continuous grooves to the broadening and deepening of the groove, (2) the erosion rate accelerates with the increasing impingement angle of the water jet; besides, the impingement angle had a nonlinear effect on the cumulative mass loss, and 30° sample exhibited the smallest mass loss per unit area (3) an improvement in the interfacial adhesion strength, fracture toughness, and hardness of the coating enhanced the water-droplet erosion resistance. These results provide guidance pertaining to the engineering application of water erosion protective coatings on steam turbine blades.


JOM ◽  
1989 ◽  
Vol 41 (3) ◽  
pp. 31-35
Author(s):  
R.R. Jaffee

Sign in / Sign up

Export Citation Format

Share Document