oxygen fuel
Recently Published Documents


TOTAL DOCUMENTS

468
(FIVE YEARS 99)

H-INDEX

32
(FIVE YEARS 4)

2022 ◽  
Vol 225 ◽  
pp. 107043
Author(s):  
Yilun Sun ◽  
Meng Huang ◽  
Jingpeng Li ◽  
Zhiyuan Wang ◽  
Jianxin Zhou

2021 ◽  
Vol 5 (1) ◽  
pp. 86
Author(s):  
Bengi Yagmurlu ◽  
Beate Orberger ◽  
Carsten Dittrich ◽  
Georges Croisé ◽  
Robin Scharfenberg ◽  
...  

Scandium (Sc) applications in solid oxygen fuel cells, aeronautics and heat exchange systems are forecasted to increase significantly without a sufficient continuous Sc supply for Europe. ScaVanger is an EU project for upscaling Sc extraction and purification technologies from various TiO2 pigment production residues. High purity Sc2O3 and ScF3 will be produced at competitive prices for the EU market. The ScaVanger process is expected to result in a 10% higher production rate and higher product purity as processing starts with a unique cleaning process of actinides. The first plant at a major European TiO2 pigment production site will be supplying about 30 t/a of Sc2O3.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7818
Author(s):  
Chun-Ying Lee ◽  
Hung-Hua Sheu ◽  
Leu-Wen Tsay ◽  
Po-Sen Hsiao ◽  
Tzu-Jing Lin ◽  
...  

In this study, Fe40Cr19Mo18C15B8 amorphous coatings were prepared using high velocity oxygen fuel (HVOF) technology. Different temperatures were used in the heat treatment (600 °C, 650 °C, and 700 °C) and the annealed coatings were analyzed by DSC, SEM, TEM, and XRD. XRD and DSC results showed that the coating started to form a crystalline structure after annealing at 650 °C. From the SEM observation, it can be found that when the annealing temperature of the Fe-based amorphous alloy coating reached 700 °C, the surface morphology of the coating became relatively flat. TEM observation showed that when the annealing temperature of the Fe-based amorphous alloy coating was 700 °C, crystal grains in the coating recrystallized with a grain size of 5–20 nm. SAED analysis showed that the precipitated carbide phase was M23C6 phase with different crystal orientations (M = Fe, Cr, Mo). Finally, the corrosion polarization curve showed that the corrosion current density of the coating after annealing only increased by 9.13 μA/cm2, which indicated that the coating after annealing treatment still had excellent corrosion resistance. It also proved that the Fe-based amorphous alloy coating can be used in high-temperature environments. XPS analysis showed that after annealing FeO and Fe2O3 oxide components increased, and the formation of a large number of crystals in the coating resulted in a decrease in corrosion resistance.


Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1533
Author(s):  
Jianxing Yu ◽  
Xin Liu ◽  
Yang Yu ◽  
Haoda Li ◽  
Pengfei Liu ◽  
...  

High-velocity oxygen fuel (HVOF)-sprayed amorphous alloy coatings usually have advantages of a dense structure that improve their resistance to corrosion, wear, and fatigue in the substrate. The flame flow characteristics and particle behaviors during the spray process have a significant influence on the amorphous coating structure and properties. In this study, a computational fluid dynamics model is enforced to analyze the flame flow and Fe-based amorphous alloy particle behavior in an HVOF spray process. The flame flow temperature, velocity characteristics, and the Fe48Cr15Mo14C15B6Y2 Fe-based amorphous alloy particles’ velocities, temperatures, flight trajectories, and mass concentration distribution characteristics are simulated. Moreover, the effects of the oxygen/fuel ratio, particle morphology parameter, particle-injection rate, and angle on the particle behavior are also investigated. Judging from the simulation results, the optimum amorphous alloy particle size varies between 20 and 30 μm, the shape factor is within the range of 0.9–1, the optimum O/F ratio is 3.4, the optimum injection angle is 45°, and the optimum injection rate is 10 m/s. With these conditions, most of the particles settled toward the centerline of the spray gun and are in a semisolid or solid state before affecting the substrate, giving the materials optimal coating structure and performance.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Dingjun Li ◽  
Peng Jiang ◽  
Fan Sun ◽  
Xiaohu Yuan ◽  
Jianpu Zhang ◽  
...  

Abstract The water-droplet erosion of low-pressure steam turbine blades under wet steam environments can alter the vibration characteristics of the blade, and lead to its premature failure. Using high-velocity oxygen-fuel (HVOF) sprayed water-droplet erosion resistant coating is beneficial in preventing the erosion failure, while the erosion behavior of such coatings is still not revealed so far. Here, we examined the water-droplet erosion resistance of Cr3C2–25NiCr and WC–10Co–4Cr HVOF sprayed coatings using a pulsed water jet device with different impingement angles. Combined with microscopic characterization, indentation, and adhesion tests, we found that: (1) both of the coatings exhibited a similar three-stage erosion behavior, from the formation of discrete erosion surface cavities and continuous grooves to the broadening and deepening of the groove, (2) the erosion rate accelerates with the increasing impingement angle of the water jet; besides, the impingement angle had a nonlinear effect on the cumulative mass loss, and 30° sample exhibited the smallest mass loss per unit area (3) an improvement in the interfacial adhesion strength, fracture toughness, and hardness of the coating enhanced the water-droplet erosion resistance. These results provide guidance pertaining to the engineering application of water erosion protective coatings on steam turbine blades.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
D. Elango ◽  
A. Daniel Das ◽  
S. P. Kumaresh Babu ◽  
S. Natarajan ◽  
A. Yeshitla

In this present research, the coatings of SA209-T1 using high velocity oxygen fuel were employed for the application of boiler tubes. Due to the adaptation of corrosion easy in boiler material, the research of those properties is significant because of its criticality and functionality during the service time. A right coating was found and applied on the SA209-T1 surface against corrosive environments. Good corrosion resistance is achieved by WC-flyash coatings applied on SA209-T1 substrate. The 90% WC-10% flyash coatings were found to be more protective followed by SA209-T1 steel. WC-flyash covering was tracked down so that the covering is compelling to secure the SA209-T1 steel substrate. It is reasoned that the arrangement of NiO, Cr2O3, CoO, and NiCr2O4 could add to the advancement of consumption opposition in coatings. The steel of uncoated endured erosion as extraordinary stripping and spalling of the scale, which could be because of the development of Fe2O3 oxide scale unprotectively. This paper reveals the performance, applications, and development of 90wt.% WC and 10wt.% fly ash through HVOF coating in SA209-T1 for electrochemical corrosion studies at room temperature.


Sign in / Sign up

Export Citation Format

Share Document