steam turbine
Recently Published Documents


TOTAL DOCUMENTS

4012
(FIVE YEARS 709)

H-INDEX

33
(FIVE YEARS 7)

2022 ◽  
Vol 173 ◽  
pp. 107387
Author(s):  
Amir Kafaei ◽  
Fahime Salmani ◽  
Esmail Lakzian ◽  
Włodzimierz Wróblewski ◽  
Mikhail S. Vlaskin ◽  
...  

Energy ◽  
2022 ◽  
Vol 242 ◽  
pp. 122951
Author(s):  
Amir Momeni Dolatabadi ◽  
Jamshid Moslehi ◽  
Mohsen Saffari Pour ◽  
Seyed Soheil Mousavi Ajarostaghi ◽  
Sébastien Poncet ◽  
...  

Author(s):  
Yongjian Sun ◽  
Bo Xu

In this paper, in order to solve the calculation problem of creep damage of steam turbine rotor, a real-time calculation method based on finite element model is proposed. The temperature field and stress field of the turbine rotor are calculated using finite element analysis software. The temperature data and stress data of the crucial positions are extracted. The data of temperature, pressure, rotational speed, and stress relating to creep damage calculation are normalized. A real-time creep stress calculation model is established by multiple regression method. After that, the relation between stress and damage function is analyzed and fitted, and creep damage is calculated in real-time. A creep damage real-time calculation system is constructed for practical turbine engineering. Finally, a numerical simulation experiment is designed and carried out to verify the effectiveness of this novel approach. Contributions of present work are that a practical solution for real-time creep damage prediction of steam turbine is supplied. It relates the real-time creep damage prediction to process parameters of steam turbine, and it bridges the gap between the theoretical research works and practical engineering.


Author(s):  
Krzysztof Bernard Łukaszewski

The aim of the article is to demonstrate the relationship between the adaptive regulation of the heat exchange surface to specific operating conditions of a steam turbine condenser and the reliability and availability of this surface in a specific period of time. The article exemplifies the relationship between the settings of the condenser heat exchange surface and the resulting changes in the reliability structures of this surface. The method of creating a mathematical model of reliability estimation, which is characterized by the variability of the reliability structures of the heat exchange surface in relation to specific operating conditions in a specific period of time, was indicated. Then, exemplary simulations of the adaptation of reliability structures of specific pipe systems constituting the condenser’s heat exchange surface to specific processes of operation of this condenser are presented. The simulations refer to the time-varying thermal loads of the condenser, the time-varying mean thickness of the sediments, and changes in the temperature of the cooling water at the point of its intake over time. The adaptation of certain reliability structures consists in the adaptation of specific systems of pipes through which the cooling water flows to the currently existing operating conditions of the condenser in order to maintain the desired reliability of the heat exchange surface for a specified time. This is done by enabling or disabling the flow of cooling water through a given number of pipes in specific systems under given operating conditions. On the basis of computer simulations, the reliability functions, and the availability functions of the subsystem under consideration were estimated.


2022 ◽  
Vol 12 (1) ◽  
pp. 65
Author(s):  
Yasir Rafique ◽  
Abid Hussain

The energy efficiency of a power plant is largely determined by the vibrations of bearings that hold the shaft rotating at high speed which need to be critically controlled. This study presents the relative vibration modeling of a shaft bearing that is installed in a 660 MW supercritical steam turbine system. The operational data in raw form after being cleaned using machine learning based visualization and extensive data processing helped in training and validation of SVM and ANN models which are then compared by external validation tests. The model with best results is then used for the simulations of constructed operating scenarios. The ANN has been further tested for the complete operational load range (353 MW to 662 MW) which predicted the reduction in relative vibrations. Moreover, the validated ANN model has been used to develop many strategies of vibration reduction which helped in achieving more than 4% reduction in relative vibrations. Subsequently, an operational strategy that predicts a significant reduction in the bearing vibration levels is selected. For confirmation of the accuracy of prediction by ANN process model, the selected strategy has been used with the actual power plant. This assures the significant reduction of bearing vibration less than the alarm limit.


2022 ◽  
Vol 355 ◽  
pp. 03071
Author(s):  
Gang Liu ◽  
Guang Yu ◽  
Qingyuan Xue

It is not easy to carry out the detailed variable condition calculation of steam turbine in engineering application. In this paper, a variable condition calculation model based on the internal and external characteristics of steam turbine is proposed, and a variable condition calculation model of constant power and constant flow is established. The model is applied to calculate 75% THA, 50%THA, typical industrial and heating extraction conditions of a subcritical 330 MW unit. The error is small compared with the design value, and the calculation accuracy meets the requirements. The results show that the model has high accuracy and can meet the requirements of engineering application.


Sign in / Sign up

Export Citation Format

Share Document