scholarly journals On the Ger\v{s}gorin disks of distance matrices of graphs

2021 ◽  
Vol 37 ◽  
pp. 709-717
Author(s):  
Mustapha Aouchiche ◽  
Bilal A. Rather ◽  
Issmail El Hallaoui

For a simple connected graph $G$, let $D(G)$, $Tr(G)$, $D^{L}(G)=Tr(G)-D(G)$, and $D^{Q}(G)=Tr(G)+D(G)$ be the distance matrix, the diagonal matrix of the vertex transmissions, the distance Laplacian matrix, and the distance signless Laplacian matrix of $G$, respectively. Atik and Panigrahi [2] suggested the study of the problem: Whether all eigenvalues, except the spectral radius, of $ D(G) $ and $ D^{Q}(G) $ lie in the smallest Ger\v{s}gorin disk? In this paper, we provide a negative answer by constructing an infinite family of counterexamples.

2021 ◽  
Vol 9 (1) ◽  
pp. 1-18
Author(s):  
Carolyn Reinhart

Abstract The distance matrix 𝒟(G) of a connected graph G is the matrix containing the pairwise distances between vertices. The transmission of a vertex vi in G is the sum of the distances from vi to all other vertices and T(G) is the diagonal matrix of transmissions of the vertices of the graph. The normalized distance Laplacian, 𝒟𝒧(G) = I−T(G)−1/2 𝒟(G)T(G)−1/2, is introduced. This is analogous to the normalized Laplacian matrix, 𝒧(G) = I − D(G)−1/2 A(G)D(G)−1/2, where D(G) is the diagonal matrix of degrees of the vertices of the graph and A(G) is the adjacency matrix. Bounds on the spectral radius of 𝒟 𝒧 and connections with the normalized Laplacian matrix are presented. Twin vertices are used to determine eigenvalues of the normalized distance Laplacian. The distance generalized characteristic polynomial is defined and its properties established. Finally, 𝒟𝒧-cospectrality and lack thereof are determined for all graphs on 10 and fewer vertices, providing evidence that the normalized distance Laplacian has fewer cospectral pairs than other matrices.


2018 ◽  
Vol 34 ◽  
pp. 459-471 ◽  
Author(s):  
Shuting Liu ◽  
Jinlong Shu ◽  
Jie Xue

Let $G=(V(G),E(G))$ be a $k$-connected graph with $n$ vertices and $m$ edges. Let $D(G)$ be the distance matrix of $G$. Suppose $\lambda_1(D)\geq \cdots \geq \lambda_n(D)$ are the $D$-eigenvalues of $G$. The transmission of $v_i \in V(G)$, denoted by $Tr_G(v_i)$ is defined to be the sum of distances from $v_i$ to all other vertices of $G$, i.e., the row sum $D_{i}(G)$ of $D(G)$ indexed by vertex $v_i$ and suppose that $D_1(G)\geq \cdots \geq D_n(G)$. The $Wiener~ index$ of $G$ denoted by $W(G)$ is given by $W(G)=\frac{1}{2}\sum_{i=1}^{n}D_i(G)$. Let $Tr(G)$ be the $n\times n$ diagonal matrix with its $(i,i)$-entry equal to $TrG(v_i)$. The distance signless Laplacian matrix of $G$ is defined as $D^Q(G)=Tr(G)+D(G)$ and its spectral radius is denoted by $\rho_1(D^Q(G))$ or $\rho_1$. A connected graph $G$ is said to be $t$-transmission-regular if $Tr_G(v_i) =t$ for every vertex $v_i\in V(G)$, otherwise, non-transmission-regular. In this paper, we respectively estimate $D_1(G)-\lambda_1(G)$ and $2D_1(G)-\rho_1(G)$ for a $k$-connected non-transmission-regular graph in different ways and compare these obtained results. And we conjecture that $D_1(G)-\lambda_1(G)>\frac{1}{n+1}$. Moreover, we show that the conjecture is valid for trees.


Mathematics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 869
Author(s):  
Chunxiang Wang ◽  
Shaohui Wang ◽  
Jia-Bao Liu ◽  
Bing Wei

Let A ( G ) be the adjacent matrix and D ( G ) the diagonal matrix of the degrees of a graph G, respectively. For 0 ≤ α ≤ 1 , the A α -matrix is the general adjacency and signless Laplacian spectral matrix having the form of A α ( G ) = α D ( G ) + ( 1 − α ) A ( G ) . Clearly, A 0 ( G ) is the adjacent matrix and 2 A 1 2 is the signless Laplacian matrix. A cactus is a connected graph such that any two of its cycles have at most one common vertex, that is an extension of the tree. The A α -spectral radius of a cactus graph with n vertices and k cycles is explored. The outcomes obtained in this paper can imply some previous bounds from trees to cacti. In addition, the corresponding extremal graphs are determined. Furthermore, we proposed all eigenvalues of such extremal cacti. Our results extended and enriched previous known results.


2018 ◽  
Vol 11 (05) ◽  
pp. 1850066 ◽  
Author(s):  
Abdollah Alhevaz ◽  
Maryam Baghipur ◽  
Ebrahim Hashemi

The distance signless Laplacian matrix [Formula: see text] of a connected graph [Formula: see text] is defined as [Formula: see text], where [Formula: see text] is the distance matrix of [Formula: see text] and [Formula: see text] is the diagonal matrix whose main entries are the vertex transmissions of [Formula: see text], and the spectral radius of a connected graph [Formula: see text] is the largest eigenvalue of [Formula: see text]. In this paper, first we obtain the [Formula: see text]-eigenvalues of the join of certain regular graphs. Next, we give some new bounds on the distance signless Laplacian spectral radius of a graph [Formula: see text] in terms of graph parameters and characterize the extremal graphs. Utilizing these results we present some upper and lower bounds on the distance signless Laplacian energy of a graph [Formula: see text].


2018 ◽  
Vol 10 (2) ◽  
pp. 218-240
Author(s):  
Abdollah Alhevaz ◽  
Maryam Baghipur ◽  
Ebrahim Hashemi ◽  
Yaser Alizadeh

Abstract Let G be a simple connected graph. The reciprocal transmission Tr′G(ν) of a vertex ν is defined as $${\rm{Tr}}_{\rm{G}}^\prime ({\rm{\nu }}) = \sum\limits_{{\rm{u}} \in {\rm{V}}(G)} {{1 \over {{{\rm{d}}_{\rm{G}}}(u,{\rm{\nu }})}}{\rm{u}} \ne {\rm{\nu }}.} $$ The reciprocal distance signless Laplacian (briefly RDSL) matrix of a connected graph G is defined as RQ(G)= diag(Tr′ (G)) + RD(G), where RD(G) is the Harary matrix (reciprocal distance matrix) of G and diag(Tr′ (G)) is the diagonal matrix of the vertex reciprocal transmissions in G. In this paper, we investigate the RDSL spectrum of some classes of graphs that are arisen from graph operations such as cartesian product, extended double cover product and InduBala product. We introduce minimum covering reciprocal distance signless Laplacian matrix (or briey MCRDSL matrix) of G as the square matrix of order n, RQC(G) := (qi;j), $${{\rm{q}}_{{\rm{ij}}}} = \left\{ {\matrix{ {1 + {\rm{Tr}}\prime ({{\rm{\nu }}_{\rm{i}}})} & {{\rm{if}}} & {{\rm{i = j}}} & {{\rm{and}}} & {{{\rm{\nu }}_{\rm{i}}} \in {\rm{C}}} \cr {{\rm{Tr}}\prime ({{\rm{\nu }}_{\rm{i}}})} & {{\rm{if}}} & {{\rm{i = j}}} & {{\rm{and}}} & {{{\rm{\nu }}_{\rm{i}}} \notin {\rm{C}}} \cr {{1 \over {{\rm{d(}}{{\rm{\nu }}_{\rm{i}}},{{\rm{\nu }}_{\rm{j}}})}}} & {{\rm{otherwise}}} & {} & {} & {} \cr } } \right.$$ where C is a minimum vertex cover set of G. MCRDSL energy of a graph G is defined as sum of eigenvalues of RQC. Extremal graphs with respect to MCRDSL energy of graph are characterized. We also obtain some bounds on MCRDSL energy of a graph and MCRDSL spectral radius of 𝒢, which is the largest eigenvalue of the matrix RQC (G) of graphs.


Author(s):  
Somnath Paul

The distance Laplacian matrix of a simple connected graph [Formula: see text] is defined as [Formula: see text], where [Formula: see text] is the distance matrix of [Formula: see text] and [Formula: see text] is the diagonal matrix whose main diagonal entries are the vertex transmissions in [Formula: see text] In this paper, we determine the distance Laplacian spectra of the graphs obtained by generalization of the join and lexicographic product of graphs (namely joined union). It is shown that the distance Laplacian spectra of these graphs not only depend on the distance Laplacian spectra of the participating graphs but also depend on the spectrum of another matrix of vertex-weighted Laplacian kind (analogous to the definition given by Chung and Langlands [A combinatorial Laplacian with vertex weights, J. Combin. Theory Ser. A 75 (1996) 316–327]).


2018 ◽  
Vol 10 (03) ◽  
pp. 1850035 ◽  
Author(s):  
Abdollah Alhevaz ◽  
Maryam Baghipur ◽  
Somnath Paul

The distance signless Laplacian spectral radius of a connected graph [Formula: see text] is the largest eigenvalue of the distance signless Laplacian matrix of [Formula: see text], defined as [Formula: see text], where [Formula: see text] is the distance matrix of [Formula: see text] and [Formula: see text] is the diagonal matrix of vertex transmissions of [Formula: see text]. In this paper, we determine some bounds on the distance signless Laplacian spectral radius of [Formula: see text] based on some graph invariants, and characterize the extremal graphs. In addition, we define distance signless Laplacian energy, similar to that in [J. Yang, L. You and I. Gutman, Bounds on the distance Laplacian energy of graphs, Kragujevac J. Math. 37 (2013) 245–255] and give some bounds on the distance signless Laplacian energy of graphs.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Xiaoling Zhang ◽  
Jiajia Zhou

The distance Laplacian matrix of a connected graph G is defined as ℒ G = Tr G − D G , where D G is the distance matrix of G and Tr G is the diagonal matrix of vertex transmissions of G . The largest eigenvalue of ℒ G is called the distance Laplacian spectral radius of G . In this paper, we determine the graphs with maximum and minimum distance Laplacian spectral radius among all clique trees with n vertices and k cliques. Moreover, we obtain n vertices and k cliques.


Mathematics ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 792
Author(s):  
Luis Medina ◽  
Hans Nina ◽  
Macarena Trigo

In this article, we find sharp lower bounds for the spectral radius of the distance signless Laplacian matrix of a simple undirected connected graph and we apply these results to obtain sharp upper bounds for the distance signless Laplacian energy graph. The graphs for which those bounds are attained are characterized.


Sign in / Sign up

Export Citation Format

Share Document