signless laplacian spectrum
Recently Published Documents


TOTAL DOCUMENTS

41
(FIVE YEARS 16)

H-INDEX

6
(FIVE YEARS 2)

2021 ◽  
Vol 3 (1) ◽  
pp. 22-36
Author(s):  
I. Gopalapillai ◽  
D.C. Scaria

Let $G$ be a connected graph with a distance matrix $D$. The distance eigenvalues of $G$ are the eigenvalues of $D$, and the distance energy $E_D(G)$ is the sum of its absolute values. The transmission $Tr(v)$ of a vertex $v$ is the sum of the distances from $v$ to all other vertices in $G$. The transmission matrix $Tr(G)$ of $G$ is a diagonal matrix with diagonal entries equal to the transmissions of vertices. The matrices $D^L(G)= Tr(G)-D(G)$ and $D^Q(G)=Tr(G)+D(G)$ are, respectively, the Distance Laplacian and the Distance Signless Laplacian matrices of $G$. The eigenvalues of $D^L(G)$ ( $D^Q(G)$) constitute the Distance Laplacian spectrum ( Distance Signless Laplacian spectrum ). The subdivision graph $S(G)$ of $G$ is obtained by inserting a new vertex into every edge of $G$. We describe here the Distance Spectrum, Distance Laplacian spectrum and Distance Signless Laplacian spectrum of some types of subdivision related graphs of a regular graph in the terms of its adjacency spectrum. We also derive analytic expressions for the distance energy of $\bar{S}(C_p)$, partial complement of the subdivision of a cycle $C_p$ and that of $\overline {S\left( {C_p }\right)}$, complement of the even cycle $C_{2p}$.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Chun-Li Kan ◽  
Ying-Ying Tan ◽  
Jia-Bao Liu ◽  
Bao-Hua Xing

In this paper, we give the relation between the spectrum of strongly regular graph and its clique-inserted graph. The Laplacian spectrum and the signless Laplacian spectrum of clique-inserted graph of strongly regular graph are calculated. We also give formulae expressing the energy, Kirchoff index, and the number of spanning trees of clique-inserted graph of a strongly regular graph. And, clique-inserted graph of the triangular graph T t , which is a strongly regular graph, is enumerated.


2020 ◽  
Vol 36 (36) ◽  
pp. 461-472
Author(s):  
Chandrashekar Adiga ◽  
Kinkar Das ◽  
B. R. Rakshith

In literature, there are some results known about spectral determination of graphs with many edges. In [M.~C\'{a}mara and W.H.~Haemers. Spectral characterizations of almost complete graphs. {\em Discrete Appl. Math.}, 176:19--23, 2014.], C\'amara and Haemers studied complete graph with some edges deleted for spectral determination. In fact, they found that if the deleted edges form a matching, a complete graph $K_m$ provided $m \le n-2$, or a complete bipartite graph, then it is determined by its adjacency spectrum. In this paper, the graph $K_{n}\backslash K_{l,m}$ $(n>l+m)$ which is obtained from the complete graph $K_{n}$ by removing all the edges of a complete bipartite subgraph $K_{l,m}$ is studied. It is shown that the graph $K_{n}\backslash K_{1,m}$ with $m\ge4$ is determined by its signless Laplacian spectrum, and it is proved that the graph $K_{n}\backslash K_{l,m}$ is determined by its distance spectrum. The signless Laplacian spectral determination of the multicone graph $K_{n-2\alpha}\vee \alpha K_{2}$ was studied by Bu and Zhou in [C.~Bu and J.~Zhou. Signless Laplacian spectral characterization of the cones over some regular graphs. {\em Linear Algebra Appl.}, 436:3634--3641, 2012.] and Xu and He in [L. Xu and C. He. On the signless Laplacian spectral determination of the join of regular graphs. {\em Discrete Math. Algorithm. Appl.}, 6:1450050, 2014.] only for $n-2\alpha=1 ~\text{or}~ 2$. Here, this problem is completely solved for all positive integer $n-2\alpha$. The proposed approach is entirely different from those given by Bu and Zhou, and Xu and He.


2020 ◽  
Vol 2020 ◽  
pp. 1-5
Author(s):  
Bo Deng ◽  
Caibing Chang ◽  
Haixing Zhao ◽  
Kinkar Chandra Das

This research intends to construct a signless Laplacian spectrum of the complement of any k-regular graph G with order n. Through application of the join of two arbitrary graphs, a new class of Q-borderenergetic graphs is determined with proof. As indicated in the research, with a regular Q-borderenergetic graph, sequences of regular Q-borderenergetic graphs can be constructed. The procedures for such a construction are determined and demonstrated. Significantly, all the possible regular Q-borderenergetic graphs of order 7<n≤10 are determined.


Sign in / Sign up

Export Citation Format

Share Document