scholarly journals Completeness theorems for two propositional logics in which identity diverges from mutual entailment.

1981 ◽  
Vol 22 (3) ◽  
pp. 269-282
Author(s):  
Philip Hugly ◽  
Charles Sayward
Author(s):  
Vasil Penchev

Lewis Carroll, both logician and writer, suggested a logical paradox containing furthermore two connotations (connotations or metaphors are inherent in literature rather than in mathematics or logics). The paradox itself refers to implication demonstrating that an intermediate implication can be always inserted in an implication therefore postponing its ultimate conclusion for the next step and those insertions can be iteratively and indefinitely added ad lib, as if ad infinitum. Both connotations clear up links due to the shared formal structure with other well-known mathematical observations: (1) the paradox of Achilles and the Turtle; (2) the transitivity of the relation of equality. Analogically to (1), one can juxtapose the paradox of the Liar (for Lewis Carroll’s paradox) and that of the arrow (for “Achilles and the Turtle”), i.e. a logical paradox, on the one hand, and an aporia of motion, on the other hand, suggesting a shared formal structure of both, which can be called “ontological”, on which basis “motion” studied by physics and “conclusion” studied by logic can be unified being able to bridge logic and physics philosophically in a Hegelian manner: even more, the bridge can be continued to mathematics in virtue of (2), which forces the equality (for its property of transitivity) of any two quantities to be postponed analogically ad lib and ad infinitum. The paper shows that Hilbert arithmetic underlies naturally Lewis Carroll’s paradox admitting at least three interpretations linked to each other by it: mathematical, physical and logical. Thus, it can be considered as both generalization and solution of his paradox therefore naturally unifying the completeness of quantum mechanics (i.e. the absence of hidden variables) and eventual completeness of mathematics as the same and isomorphic to the completeness of propositional logic in relation to set theory as a first-order logic (in the sense of Gödel (1930)’s completeness theorems).


1968 ◽  
Vol 62 (2) ◽  
pp. 125-164 ◽  
Author(s):  
H. Leblanc ◽  
R. Thomason

1968 ◽  
Vol 33 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Richmond H. Thomason

In Kripke [8] the first-order intuitionjstic predicate calculus (without identity) is proved semantically complete with respect to a certain model theory, in the sense that every formula of this calculus is shown to be provable if and only if it is valid. Metatheorems of this sort are frequently called weak completeness theorems—the object of the present paper is to extend Kripke's result to obtain a strong completeness theorem for the intuitionistic predicate calculus of first order; i.e., we will show that a formula A of this calculus can be deduced from a set Γ of formulas if and only if Γ implies A. In notes 3 and 5, below, we will indicate how to account for identity, as well. Our proof of the completeness theorem employs techniques adapted from Henkin [6], and makes no use of semantic tableaux; this proof will also yield a Löwenheim-Skolem theorem for the modeling.


1998 ◽  
Vol 63 (2) ◽  
pp. 623-637 ◽  
Author(s):  
Wendy MacCaull

AbstractIn this paper we give relational semantics and an accompanying relational proof theory for full Lambek calculus (a sequent calculus which we denote by FL). We start with the Kripke semantics for FL as discussed in [11] and develop a second Kripke-style semantics, RelKripke semantics, as a bridge to relational semantics. The RelKripke semantics consists of a set with two distinguished elements, two ternary relations and a list of conditions on the relations. It is accompanied by a Kripke-style valuation system analogous to that in [11]. Soundness and completeness theorems with respect to FL hold for RelKripke models. Then, in the spirit of the work of Orlowska [14], [15], and Buszkowski and Orlowska [3], we develop relational logic RFL. The adjective relational is used to emphasize the fact that RFL has a semantics wherein formulas are interpreted as relations. We prove that a sequent Γ → α in FL is provable if and only if a translation, t(γ1 ● … ● γn ⊃ α)ευu, has a cut-complete fundamental proof tree. This result is constructive: that is, if a cut-complete proof tree for t(γ1 ● … ● γn ⊃ α)ευu is not fundamental, we can use the failed proof search to build a relational countermodel for t(γ1 ● … ● γn ⊃ α)ευu and from this, build a RelKripke countermodel for γ1 ● … ● γn ⊃ α. These results allow us to add FL, the basic substructural logic, to the list of those logics of importance in computer science with a relational proof theory.


Sign in / Sign up

Export Citation Format

Share Document