Calculating Hausdorff dimension of Julia sets and Kleinian limit sets

2002 ◽  
Vol 124 (3) ◽  
pp. 495-545 ◽  
Author(s):  
Oliver Jenkinson ◽  
Mark Pollicott
2000 ◽  
Vol 122 (3) ◽  
pp. 465-482 ◽  
Author(s):  
Martin Bridgeman ◽  
Edward C. Taylor

2019 ◽  
Vol 2019 (746) ◽  
pp. 149-170
Author(s):  
Pekka Pankka ◽  
Juan Souto

Abstract We prove that Kleinian groups whose limit sets are Cantor sets of Hausdorff dimension < 1 are free. On the other hand we construct for any ε > 0 an example of a non-free purely hyperbolic Kleinian group whose limit set is a Cantor set of Hausdorff dimension < 1 + ε.


2019 ◽  
pp. 153-192
Author(s):  
Xin-Hou Hua ◽  
Chung-Chun Yang

Author(s):  
James Waterman

Abstract We show that the Hausdorff dimension of the set of points of bounded orbit in the Julia set of a meromorphic map with a simply connected direct tract and a certain restriction on the singular values is strictly greater than one. This result is obtained by proving new results related to Wiman–Valiron theory.


2000 ◽  
Vol 20 (3) ◽  
pp. 895-910 ◽  
Author(s):  
GWYNETH M. STALLARD

Ruelle (Repellers for real analytic maps. Ergod. Th. & Dynam. Sys.2 (1982), 99–108) used results from statistical mechanics to show that, when a rational function $f$ is hyperbolic, the Hausdorff dimension of the Julia set, $\dim J(f)$, depends real analytically on $f$. We give a proof of the fact that $\dim J(f)$ is a continuous function of $f$ that does not depend on results from statistical mechanics and we show that this result can be extended to a class of transcendental meromorphic functions. This enables us to show that, for each $d \in (0,1)$, there exists a transcendental meromorphic function $f$ with $\dim J(f) = d$.


2013 ◽  
Vol 35 (4) ◽  
pp. 1045-1055 ◽  
Author(s):  
ANDREW D. BARWELL ◽  
JONATHAN MEDDAUGH ◽  
BRIAN E. RAINES

AbstractIn this paper we consider quadratic polynomials on the complex plane${f}_{c} (z)= {z}^{2} + c$and their associated Julia sets,${J}_{c} $. Specifically, we consider the case that the kneading sequence is periodic and not an$n$-tupling. In this case${J}_{c} $contains subsets that are homeomorphic to the unit circle, usually infinitely many disjoint such subsets. We prove that${f}_{c} : {J}_{c} \rightarrow {J}_{c} $has shadowing, and we classify all$\omega $-limit sets for these maps by showing that a closed set$R\subseteq {J}_{c} $is internally chain transitive if, and only if, there is some$z\in {J}_{c} $with$\omega (z)= R$.


Sign in / Sign up

Export Citation Format

Share Document