High Precision Even-power Phase Modulation Method For Self-Mixing Displacement Sensor Under Weak Feedback Regime

2021 ◽  
Author(s):  
Zhen Li ◽  
Qiu Lirong ◽  
Hu Lu ◽  
Lu Liping ◽  
Wencai Huang ◽  
...  
IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 204153-204159
Author(s):  
Liping Lu ◽  
Lu Hu ◽  
Zhen Li ◽  
Lirong Qiu ◽  
Wencai Huang ◽  
...  

2005 ◽  
Author(s):  
Yang Wei ◽  
Donglin Peng ◽  
Xiaokang Liu ◽  
Xinghong Zhang

2018 ◽  
Vol 36 (18) ◽  
pp. 4046-4050 ◽  
Author(s):  
Ke Chen ◽  
Min Guo ◽  
Yang Yang ◽  
Kang Liu ◽  
Wanjin Cai ◽  
...  

2021 ◽  
Author(s):  
Zeina ELRAWASHDEH ◽  
Philippe REVEL ◽  
Christine PRELLE ◽  
Frédéric LAMARQUE

Abstract This research study presents the design and the high precision manufacture procedure of a fiber-optic displacement sensor. It is composed of two fiber-optic probes associated with a structure of a cones’ grating. The sensor is characterized by its ability to measure the linear displacement for an axis performing a helicoidal motion. This motion has been demonstrated on a high precision lathe; where the spindle provided the rotational motion, associated to a translational motion on the linear stage. This allowed to obtain the two simultaneous motions. The displacement of the translational stage is measured by the sensor in real time.Firstly, a highly precise geometric model of the reflector part for the sensor was developed. This model provided a specific geometry for the cones-assembled grating, which has been precisely manufactured. The geometric parameters and the surface characteristics of each step in the fabricated grating were both identified in situ on the lathe. The agreement between simulation and experimental results is excellent. The performances of the fiber-optic displacement sensor were identified in-situ on the lathe. The analysis of the voltage output signals from the two fiber-optic probes is used to measure the grating displacement. The unbalanced rotation due to non-centered axes was also characterized. The sensor provided a micrometric resolution, on a measurement range of more than one centimeter.


2018 ◽  
Vol 931 ◽  
pp. 681-686
Author(s):  
Hovsep S. Petrosyan ◽  
Yegisabeth H. Hayrapetyan ◽  
Hovnan A. Hunanyan

The methods of construction of high-precision rangefinder on the modulation method, which will complement the means of linear measurements on the interference method, are considered. The linearly compensation method, which leads to the possibility of implementing range finders with an error of mφ=0.01 mm, is proposed as the basic constructions of extremely high accuracy linear measurement devices.


2014 ◽  
Vol 568-570 ◽  
pp. 331-335
Author(s):  
Ping He ◽  
Meng Wang ◽  
Chao Liu ◽  
Ying Li

Steel rolling occupies a very important position in the iron and steel industry. The thickness of the steel plate is a crucial index of the quality, so the automatic detection system for high-precision thickness of the steel industry has a vital significance. The traditional thickness instruments have X-ray thickness gauge and ultrasonic thickness meter while the X-ray thickness gauge has radiation which is harmful to human body and ultrasonic thickness has a lower precision. For these shortcomings, a high precision thickness gauge by laser sensor was designed. Presented the differential measurement method based on laser displacement sensor. Then using TMS320F2812 as main control chip designed the hardware of the system. Finally, software programming was completed based on the hardware design. By experiment research, the results show that the laser thickness gauge has advantages of high precision and high reliability. It has a high practical value.


Sign in / Sign up

Export Citation Format

Share Document