Multiple Access Interference Noise Suppression in an Optical CDMA System by Time Gating with the TOAD

Author(s):  
I. Glesk ◽  
C-S. Bres ◽  
Y-K. Huang ◽  
D. Rand ◽  
P. R. Prucnal
2014 ◽  
Vol 35 (4) ◽  
Author(s):  
N. Alsowaidi ◽  
T. Eltaif ◽  
M. R. Mokhtar

AbstractDue to various desirable features of optical code division multiple access (OCDMA), it is believed this technique once developed and commercially available will be an integral part of optical access networks. Optical CDMA system suffers from a problem called multiple access interference (MAI) which limits the number of active users, it occurs when number of active users share the same carriers. The aim of this paper is to review successive interference cancellation (SIC) scheme based on optical CDMA system. The paper also reviews the system performance in presence of shot noise, thermal noise, and phase–induced intensity noise (PIIN). A comprehensive review on the mathematical model of SIC scheme using direct detection (DS) and spectral amplitude coding (SAC) were presented in this article.


2018 ◽  
Vol 7 (2.6) ◽  
pp. 311
Author(s):  
Sumitra N. Motade ◽  
Anju V. Kulkarni

Nowadays, Multicarrier Direct sequence code division multiple access (MC DS-CDMA) systems are used in mobile communication. Performance of these systems are limited by multiple access interference (MAI) created by spread-spectrum users in the channel as well as background channel noise. This paper proposes an incremental gradient descent (IGD) multi-user detection (MUD) for MC DS-CDMA system that can achieve near-optimum performance while the number of users is linear in its implementation complexity.  The IGD algorithm make an effort to perform optimum MUD by updating one user's bit decision each iteration in the best way. This algorithm accelerates the gradient algorithm convergence by averaging. When a minimum mean square error (MMSE) MUD is employed to initialize the proposed algorithm, in all cases tested the gradient search converges to a solution with optimum performance. Further, the iterative tests denote that the proposed IGD algorithm provides significant performance for cases where other suboptimum algorithms perform poorly. Simulation compares the proposed IGD algorithm with the conventional detectors. 


2019 ◽  
Vol 40 (4) ◽  
pp. 463-472
Author(s):  
Ankita Rani ◽  
Deepak Kedia

Abstract Optical code division multiple access (OCDMA) system provides highly secured transmission in addition to its capabilities to support asynchronous transmission and soft blocking. Two-dimensional OCDMA codes are chosen in this paper due to their high cardinality, good spectral efficiency and flexibility in their construction methods against direct sequence codes. This paper focuses on study of impact of multiple access interference (MAI) at high data rates for 2-D prime codesbased OCDMA system. It is shown that how the change in number of simultaneous users affects the transmission quality. Further, performance of the system is analysed in terms of bit error rate, received electrical power and eye openings. In addition, this paper also shows a comparative analysis of 2-D codes-based OCDMA system and wavelength division multiple access (WDMA) system in order to justify the improved performance of the proposed system. It is observed that the performance of 2-D OCDMA system is much better than WDMA system in terms of quality as well as security.


Author(s):  
M. K.A. Abdullah ◽  
S. A. Aljunid ◽  
M. D.A. Samad ◽  
S. B.A. Anas ◽  
R. K.Z. Sahbudin

Many codes have been proposed for optical CDMA system as discussed in Svetislav, Mari, Zoran, Kosti, and Titlebaum (1993), Salehi (1989), Liu and Tsao (2002), Maric, Moreno, and Corrada (1996), Wei and Ghafouri-Shiraz (2002), and Prucnal, Santoro, and Ting (1986). Optical code division multiple access (OCDMA) has been recognized as one of the most important technologies for supporting many users in shared media simultaneous, and in some cases can increase the transmission capacity of an optical fiber. OCDMA is an exciting developments in short haul optical networking because it can support both wide and narrow bandwidth applications on the same network, it connects large number of asynchronous users with low latency and jitter, and permits quality of service guarantees to be managed at the physical layer, offers robust signal security and has simplified network topologies. However, for improperly designed codes, the maximum number of simultaneous users and the performance of the system can be seriously limited by the multiple access interference (MAI) or crosstalk from other users. Another issue in OCDMA is how the coding is implemented. The beginning idea of OCDMA was restricted in time domain, in which the encoding/decoding could not been fully utilized in optical domain. Therefore a new coding in OCDMA has been introduced based on spectral encoding (Kavehrad & Zaccarin, 1995; Pearce & Aazhang, 1994; Smith, Blaikie, & Taylor, 1998; Wei & Ghafouri-Shiraz, 2002). The system, called Optical Spectrum CDMA, or OS-CDMA, has the advantage of using inexpensive optical sources, and simple direct detection receivers. In this article with an emphasis on the Spectral Amplitude Coding scheme, a new code known as Khazani-Syed (KS) code is introduced.


Sign in / Sign up

Export Citation Format

Share Document