Analysis for the convergence problem of the plane-wave expansion method for photonic crystals

2002 ◽  
Vol 19 (5) ◽  
pp. 1021 ◽  
Author(s):  
Linfang Shen ◽  
Sailing He
2013 ◽  
Vol 23 ◽  
pp. 27-30
Author(s):  
G. López-Galmiche ◽  
A. Vázquez-Guardado ◽  
I. De León ◽  
J. J. Sánchez-Mondragón

We analyzed the scattering produced by technological imperfections in a strip photonic crystal waveguide. Modeling and losses analysis of the slow light structures were carried out by plane wave expansion method using the MPB software.


2021 ◽  
Author(s):  
Mohamed I. Wafa ◽  
Yasser M. El-Batawy ◽  
Sahar A. El-Naggar

Abstract Due to the fabrication processes, inaccurate manufacturing of the photonic crystals (PCs) might occur which affect their performance. In this paper, we examine the effects of tolerance variations of the radii of the rods and the permittivity of the material of the two-dimensional PCs on their performance. The presented stochastic analysis relies on plane wave expansion method and Mote Carlo simulations. We focus on two structures, namely Si-Rods PCs and Air-Holes PCs. Numerical results show – for both structures – that uncertainties in the dimensions of the PCs have higher impact on its photonic gap than do the uncertainties in the permittivity of the Si material. In addition, Air-Holes PCs could be a good candidate with least alteration in the photonic gap considering deviations that might occur in the permittivity of Si due to impurities up to 5%.


Sign in / Sign up

Export Citation Format

Share Document