An Agile Multi-Wavelength Optical Source with configurable channel spacing and CW or pulsed operation for High-Capacity WDM Optical Networks

Author(s):  
P. Bakopoulos ◽  
E. Kehayas ◽  
A. E. H. Oehler ◽  
T. Sudmeyer ◽  
K. J. Weingarten ◽  
...  
2019 ◽  
Vol 40 (1) ◽  
pp. 75-82 ◽  
Author(s):  
Sridhar Iyer ◽  
Shree Prakash Singh

Abstract The ever increasing heterogeneity and growing traffic volume has resulted in significant innovations and paradigm shifts within the telecom backbone networks. In order to cost-effectively respond to the diverse variety of traffic requirements having heterogeneous service demands, wavelength division multiplexed (WDM) optical networks have adopted the mixed line rate (MLR) strategy. In MLR networks, many wavelength channels with various line rates can co-exist within the same fiber which, however, raises many important design issues; one of them being the choice of the channel spacing. The quality of signal is affected by the channel spacing in terms of the bit-error rate (BER), which in turn affects the maximum optical reach of the lightpaths that depends on the line rates. In regard to the aforementioned, different methods can be adopted in order to set the width of the channel spacing, viz., (a) choice of a 50 GHz uniform fixed channel spacing specified by the ITU-T grid, (b) exploring various channel spacing values for different line rates so as to optimize the usage of the fiber spectrum, or (c) seek for an optimal value of the channel spacing which results in the minimum network cost. In the current work, we evaluate the MLR network cost for various channel spacings; hence, we find an optimal value of the channel spacing that leads to the minimum MLR network cost. The simulation results reveal that, for a MLR network, even with the assumption of uniform channel spacing, optimal values of the channel spacing for a minimum cost network can be identified.


Author(s):  
Swati Bhalaik ◽  
Ashutosh Sharma ◽  
Rajiv Kumar ◽  
Neeru Sharma

Objective: Optical networks exploit the Wavelength Division Multiplexing (WDM) to meet the ever-growing bandwidth demands of upcoming communication applications. This is achieved by dividing the enormous transmission bandwidth of fiber into smaller communication channels. The major problem with WDM network design is to find an optimal path between two end users and allocate an available wavelength to the chosen path for the successful data transmission. Methods: This communication over a WDM network is carried out through lightpaths. The merging of all these lightpaths in an optical network generates a virtual topology which is suitable for the optimal network design to meet the increasing traffic demands. But, this virtual topology design is an NP-hard problem. This paper aims to explore Mixed Integer Linear Programming (MILP) framework to solve this design issue. Results: The comparative results of the proposed and existing mathematical models show that the proposed algorithm outperforms with the various performance parameters. Conclusion: Finally, it is concluded that network congestion is reduced marginally in the overall performance of the network.


2008 ◽  
Author(s):  
Lei Guo ◽  
Xingwei Wang ◽  
Xuetao Wei ◽  
Ting Yang ◽  
Weigang Hou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document