wdm optical networks
Recently Published Documents


TOTAL DOCUMENTS

591
(FIVE YEARS 31)

H-INDEX

27
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Ebrahim E. Elsayed

Abstract Optical nonlinearities give rise to many ubiquitous effects in optical fibres ’. These effects are interesting in themselves and can be detrimental in optical communication. In the Dense Wave length division multiplexing system (DWDM) the nonlinear effects plays important role .DWDM system offers component reliability, system availability and system margin. DWDM system carries different channels. Hence power level carried by fiber increases which generates nonlinear effect such as SPM, XPM, SRS, SBS and FWM. Four wave mixing (FWM) is one of the most troubling issues. The FWM gives crosstalk in DWDM system whose channel spacing is narrow. Wavelength exchanging enables data swapping between two different wavelengths simultaneously. These phenomena have been used in many applications in Wavelength Division Multiplexing (WDM) optical networks such as, wavelength conversion, wavelength sampling, optical 3R, optical interconnects and optical add-drop multiplexing.


2021 ◽  
Author(s):  
Ebrahim E. Elsayed

Abstract Optical nonlinearities give rise to many ubiquitous effects in optical fibres. These effects are interesting in them and can be detrimental in optical communication. In the Dense Wave length division multiplexing system (DWDM) the nonlinear effects plays important role .DWDM system offers component reliability, system availability and system margin. DWDM system carries different channels. Hence power level carried by fiber increases which generates nonlinear effect such as SPM ,XPM, SRS, SBS and FWM. Four waves mixing (FWM) is one of the most troubling issues. The FWM gives crosstalk in DWDM system whose channel spacing is narrow. Wavelength exchanging enables data swapping between two different wavelengths simultaneously. These phenomena have been used in many applications in Wavelength Division Multiplexing (WDM) optical networks such as, wavelength conversion, wavelength sampling, optical 3R, optical interconnects and optical add-drop multiplexing.


2021 ◽  
Author(s):  
Ebrahim E. Elsayed

Abstract Optical nonlinearities give rise to many ubiquitous effects in optical fibres ’. These effects are interesting in themselves and can be detrimental in optical communication. In the Dense Wave length division multiplexing system (DWDM) the nonlinear effects plays important role .DWDM system offers component reliability, system availability and system margin. DWDM system carries different channels. Hence power level carried by fiber increases which generates nonlinear effect such as SPM, XPM, SRS, SBS and FWM. Four wave mixing (FWM) is one of the most troubling issues. The FWM gives crosstalk in DWDM system whose channel spacing is narrow. Wavelength exchanging enables data swapping between two different wavelengths simultaneously. These phenomena have been used in many applications in Wavelength Division Multiplexing (WDM) optical networks such as, wavelength conversion, wavelength sampling, optical 3R, optical interconnects and optical add-drop multiplexing.


2021 ◽  
pp. 23-132
Author(s):  
Debasish Datta

The technologies used in optical networks have evolved seamlessly over the past six decades. Optical fibers with extremely low loss and enormous bandwidth are used as the transmission medium, while semiconductor lasers and LEDs serve as optical sources, and the photodetectors – pin and avalanche photodiodes – are used to receive the optical signal at the destination nodes. The transmitted optical signal has to pass through a variety of network elements, which in turn need a wide range of passive and active devices, carrying out the necessary networking functionalities. For WDM optical networks, many of these tasks need to be accomplished in the optical domain itself in a wavelength-selective manner, calling for various types of WDM-based networking elements. In this chapter, we present a comprehensive description of the optical and optoelectronic devices that are used in today’s optical networks. (137 words)


Sign in / Sign up

Export Citation Format

Share Document