Phase correlation arc and universal decay of entangled orbital-angular-momentum qubit states in atmospheric turbulence

2021 ◽  
Author(s):  
Donghui Yang ◽  
Zhengda Hu ◽  
ShuaiLing Wang ◽  
Yun Zhu
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhe Zhao ◽  
Runzhou Zhang ◽  
Hao Song ◽  
Kai Pang ◽  
Ahmed Almaiman ◽  
...  

AbstractOrbital-angular-momentum (OAM) multiplexing has been utilized to increase the channel capacity in both millimeter-wave and optical domains. Terahertz (THz) wireless communication is attracting increasing attention due to its broadband spectral resources. Thus, it might be valuable to explore the system performance of THz OAM links to further increase the channel capacity. In this paper, we study through simulations the fundamental system-degrading effects when using multiple OAM beams in THz communications links under atmospheric turbulence. We simulate and analyze the effects of divergence, turbulence, limited-size aperture, and misalignment on the signal power and crosstalk of THz OAM links. We find through simulations that the system-degrading effects are different in two scenarios with atmosphere turbulence: (a) when we consider the same strength of phasefront distortion, faster divergence (i.e., lower frequency; smaller beam waist) leads to higher power leakage from the transmitted mode to neighbouring modes; and (b) however, when we consider the same atmospheric turbulence, the divergence effect tends to affect the power leakage much less, and the power leakage increases as the frequency, beam waist, or OAM order increases. Simulation results show that: (i) the crosstalk to the neighbouring mode remains < − 15 dB for a 1-km link under calm weather, when we transmit OAM + 4 at 0.5 THz with a beam waist of 1 m; (ii) for the 3-OAM-multiplexed THz links, the signal-to-interference ratio (SIR) increases by ~ 5–7 dB if the mode spacing increases by 1, and SIR decreases with the multiplexed mode number; and (iii) limited aperture size and misalignment lead to power leakage to other modes under calm weather, while it tends to be unobtrusive under bad weather.


2017 ◽  
Vol 26 (11) ◽  
pp. 114207 ◽  
Author(s):  
Xiao-zhou Cui ◽  
Xiao-li Yin ◽  
Huan Chang ◽  
Zhi-chao Zhang ◽  
Yong-jun Wang ◽  
...  

2018 ◽  
Vol 38 (12) ◽  
pp. 1227002
Author(s):  
朱卓丹 Zhu Zhuodan ◽  
赵尚弘 Zhao Shanghong ◽  
谷文苑 Gu Wenyuan ◽  
刘菁 Liu Jing ◽  
孙祥祥 Sun Xiangxiang

2020 ◽  
Vol 38 (7) ◽  
pp. 1712-1721
Author(s):  
Wenjie Xiong ◽  
Peipei Wang ◽  
Menglong Cheng ◽  
Junmin Liu ◽  
Yanliang He ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document