momentum spectra
Recently Published Documents


TOTAL DOCUMENTS

306
(FIVE YEARS 74)

H-INDEX

36
(FIVE YEARS 4)

Universe ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 31
Author(s):  
Li-Li Li ◽  
Fu-Hu Liu ◽  
Muhammad Waqas ◽  
Muhammad Ajaz

We analyzed the transverse momentum spectra of positively and negatively charged pions (π+ and π−), positively and negatively charged kaons (K+ and K−), protons and antiprotons (p and p¯), as well as ϕ produced in mid-(pseudo)rapidity region in central nucleus–nucleus (AA) collisions over a center-of-mass energy range from 2.16 to 2760 GeV per nucleon pair. The transverse momentum of the considered particle is regarded as the joint contribution of two participant partons which obey the modified Tsallis-like transverse momentum distribution and have random azimuths in superposition. The calculation of transverse momentum distribution of particles is performed by the Monte Carlo method and compared with the experimental data measured by international collaborations. The excitation functions of effective temperature and other parameters are obtained in the considered energy range. With the increase of collision energy, the effective temperature parameter increases quickly and then slowly. The boundary appears at around 5 GeV, which means the change of reaction mechanism and/or generated matter.


2021 ◽  
Vol 9 ◽  
Author(s):  
Qi Wang ◽  
Fu-Hu Liu ◽  
Khusniddin K. Olimov

The squared momentum transfer spectra of light mesons, π0, π+, η, and ρ0, produced in high-energy virtual photon-proton (γ*p) → meson + nucleon process in electron-proton (ep) collisions measured by the CLAS Collaboration are analyzed by the Monte Carlo calculations, where the transfer undergoes from the incident γ* to emitted meson or equivalently from the target proton to emitted nucleon. In the calculations, the Erlang distribution from a multi-source thermal model is used to describe the transverse momentum spectra of emitted particles. Our results show that the average transverse momentum (⟨pT⟩) and the initial-state temperature (Ti) increase from lower squared photon virtuality (Q2) and Bjorken variable (xB) to higher one. This renders that the excitation degree of emission source, which is described by ⟨pT⟩ and Ti, increases with increasing of Q2 and xB.


Entropy ◽  
2021 ◽  
Vol 23 (10) ◽  
pp. 1363
Author(s):  
Muhammad Waqas ◽  
Huai-Min Chen ◽  
Guang-Xiong Peng ◽  
Abd Al Karim Haj Ismail ◽  
Muhammad Ajaz ◽  
...  

We used the blast wave model with the Boltzmann–Gibbs statistics and analyzed the experimental data measured by the NA61/SHINE Collaboration in inelastic (INEL) proton–proton collisions at different rapidity slices at different center-of-mass energies. The particles used in this study were π+, π−, K+, K− and p¯. We extracted the kinetic freeze-out temperature, transverse flow velocity, and kinetic freeze-out volume from the transverse momentum spectra of the particles. We observed that the kinetic freeze-out temperature is rapidity and energy dependent, while the transverse flow velocity does not depend on them. Furthermore, we observed that the kinetic freeze-out volume is energy dependent, but it remains constant with changing the rapidity. We also observed that all three parameters are mass dependent. In addition, with the increase of mass, the kinetic freeze-out temperature increases, and the transverse flow velocity, as well as kinetic freeze-out volume decrease.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. Waqas ◽  
G. X. Peng ◽  
Fu-Hu Liu ◽  
Z. Wazir

AbstractThe transverse momentum spectra of light nuclei (deuteron, triton and helion) produced in various centrality intervals in Gold–Gold (Au–Au), Lead–Lead (Pb–Pb) and proton–Lead (p–Pb) collisions, as well as in inelastic (INEL) proton–proton (p–p) collisions are analyzed by the blast wave model with Boltzmann Gibbs statistics. The model results are nearly in agreement with the experimental data measured by STAR and ALICE Collaborations in special transverse momentum ranges. We extracted the bulk properties in terms of kinetic freezeout temperature, transverse flow velocity and freezeout volume. It is observed that deuteron and anti-deuteron freezeout later than triton and helion as well as their anti-particles due to its smaller mass, while helion and triton, and anti-helion and anti-triton freezeout at the same time due to isospin symmetry at higher energies. It is also observed that light nuclei freezeout earlier than their anti-nuclei due to the large coalescence of nucleons for light nuclei compared to their anti-nuclei. The kinetic freezeout temperature, transverse flow velocity and kinetic freezeout volume decrease from central to peripheral collisions. Furthermore, the transverse flow velocity depends on mass of the particle which decreases with increasing the mass of the particle.


2021 ◽  
Vol 81 (10) ◽  
Author(s):  
A. Acharya ◽  
H. Adhikary ◽  
K. K. Allison ◽  
N. Amin ◽  
E. V. Andronov ◽  
...  

AbstractDouble-differential yields of $${\Xi \left( 1530\right) ^{0}} $$ Ξ 1530 0 and $${\overline{\Xi }\left( 1530\right) ^{0}} $$ Ξ ¯ 1530 0 resonances produced in p+p interactions were measured at a laboratory beam momentum of 158 $$\text{ GeV }\!/\!c$$ GeV / c . This measurement is the first of its kind in p+p interactions below LHC energies. It was performed at the CERN SPS by the NA61/SHINE collaboration. Double-differential distributions in rapidity and transverse momentum were obtained from a sample of $$26\times 10^6$$ 26 × 10 6 inelastic events. The spectra are extrapolated to full phase space resulting in mean multiplicity of $${\Xi \left( 1530\right) ^{0}} $$ Ξ 1530 0 ($$6.73 \pm 0.25\pm 0.67)\times 10^{-4}$$ 6.73 ± 0.25 ± 0.67 ) × 10 - 4 and $${\overline{\Xi }\left( 1530\right) ^{0}} $$ Ξ ¯ 1530 0 ($$2.71 \pm 0.18\pm 0.18)\times 10^{-4}$$ 2.71 ± 0.18 ± 0.18 ) × 10 - 4 . The rapidity and transverse momentum spectra and mean multiplicities were compared to predictions of string-hadronic and statistical model calculations.


2021 ◽  
Vol 29 (19) ◽  
pp. 30666
Author(s):  
Hui Zhang ◽  
Wenjie Zheng ◽  
Guochen Zheng ◽  
Peng Fu ◽  
Jun Qu ◽  
...  

Author(s):  
M. Waqas ◽  
G. X. Peng ◽  
Z. Wazir ◽  
Hai-Ling Lao

Transverse momentum spectra of different types of identified charged particles in central Gold–Gold (Au–Au) collisions and inelastic (INEL) or nonsingle diffractive (NSD) proton–proton (pp) collisions at the Relativistic Heavy Ion Collider (RHIC), as well as in central and peripheral Lead–Lead (Pb–Pb) collisions, and INEL or NSD pp collisions at the Large Hadron Collider (LHC) are analyzed by the blast-wave model with Tsallis statistics. The model results are approximately in agreement with the experimental data measured by STAR, PHENIX and ALICE Collaborations in special transverse momentum ranges. Kinetic freeze-out (KFO) temperature and transverse flow velocity are extracted from the transverse momentum spectra of the particles. It is shown that KFO temperature of the emission source depends on mass of the particles, which reveals the mass-dependent KFO scenario in collisions at RHIC and LHC. Furthermore, the KFO temperature and transverse flow velocity in central nucleus–nucleus (AA) collisions are larger than in peripheral collisions, and both of them are slightly larger in peripheral nucleus–nucleus collisions or almost equivalent to that in proton–proton collisions at the same center-of-mass energy which shows their similar thermodynamic nature.


Author(s):  
Khusniddin K. Olimov ◽  
Fu-Hu Liu ◽  
Kobil A. Musaev ◽  
Kosim Olimov ◽  
Boburbek J. Tukhtaev ◽  
...  

Multiplicity dependencies of midrapidity [Formula: see text] spectra of identified charged particles in inelastic [Formula: see text] collisions at [Formula: see text] TeV at the Large Hadron Collider (LHC), measured by ALICE Collaboration, have been analyzed. The combined minimum [Formula: see text] fits with thermodynamically consistent Tsallis function as well as Hagedorn function with the embedded transverse flow describe quite satisfactorily the [Formula: see text] spectra of particles in the studied 10 different classes of charged-particle multiplicity in inelastic [Formula: see text] collisions at [Formula: see text] TeV. The obtained effective temperatures [Formula: see text] of thermodynamically consistent Tsallis function demonstrate a consistent growth with an increase in multiplicity of charged particles in inelastic [Formula: see text] collisions at [Formula: see text] TeV, and the corresponding [Formula: see text] versus the average charged-particle (pseudorapidity) multiplicity density [Formula: see text] dependence is described very well by the simple power function with exponent parameter [Formula: see text] (1/3) in the whole analyzed range [Formula: see text]. It is found that the transverse (radial) flow becomes significant at higher multiplicity events in [Formula: see text] collisions at [Formula: see text] TeV, reaching the maximum value [Formula: see text] at the largest studied multiplicity density [Formula: see text]. It is estimated from analysis of [Formula: see text] and [Formula: see text] versus [Formula: see text] dependencies, obtained using Hagedorn function with the embedded transverse flow, that the probable onset of deconfinement phase transition in inelastic [Formula: see text] collisions at [Formula: see text] TeV occurs at [Formula: see text].


2021 ◽  
Vol 84 (4) ◽  
pp. 467-474
Author(s):  
B. M. Abramov ◽  
M. Baznat ◽  
Yu. A. Borodin ◽  
S. A. Bulychjov ◽  
I. A. Dukhovskoy ◽  
...  

Abstract In the FRAGM experiment at the heavy-ion accelerator$$-$$accumulator complex ITEP$$-$$TWA, yields of cumulative charged $$\pi$$ mesons have been measured in a fragmentation of carbon ions with the energy of 3.2 GeV/nucleon on a beryllium target. The momentum spectra of $$\pi$$ mesons cover four orders of the invariant cross section magnitude. They demonstrate the exponential fall with increasing energy. The measured inverse slope parameter is compared with similar measurements in nucleon–nucleus interactions and ion–ion collisions at lower energies. The energy dependence of the ratio of the yields of negative to positive $$\pi$$ mesons is presented. This dependence is discussed in a connection with Coulomb and isotopic effects. The obtained data are compared with predictions of several ion–ion interaction models.


Sign in / Sign up

Export Citation Format

Share Document