scholarly journals Convergent evolution of SWS2 opsin facilitates adaptive radiation of threespine stickleback into different light environments

PLoS Biology ◽  
2017 ◽  
Vol 15 (4) ◽  
pp. e2001627 ◽  
Author(s):  
David A. Marques ◽  
John S. Taylor ◽  
Felicity C. Jones ◽  
Federica Di Palma ◽  
David M. Kingsley ◽  
...  
Author(s):  
Pat Willmer

This chapter examines pollination syndromes, floral constancy, and pollinator effectiveness. Flowers show enormous adaptive radiation, but the same kind of flower reappears by convergent evolution in many different families. Thus many families produce rather similar, simple bowl-shaped flowers like buttercups; many produce similar zygomorphic tubular lipped flowers; and many produce fluffy flower heads of massed (often white) florets. These broad flower types are the basis of the idea of pollination syndromes—the flowers have converged on certain morphologies and reward patterns because they are exploiting the abilities and preferences of particular kinds of visitor. After providing an overview of pollination syndromes, the chapter explains why pollination syndromes can be defended. It then considers flower constancy, along with the distinction between flower visitors and effective pollinators. It concludes with some observations on how flower visitors can contribute to speciation of plants through specialization and through their constancy.


2008 ◽  
Vol 5 (2) ◽  
pp. 221-224 ◽  
Author(s):  
Dawn M Reding ◽  
Jeffrey T Foster ◽  
Helen F James ◽  
H. Douglas Pratt ◽  
Robert C Fleischer

Natural selection plays a fundamental role in the ecological theory of adaptive radiation. A prediction of this theory is the convergent evolution of traits in lineages experiencing similar environments. The Hawaiian honeycreepers are a spectacular example of adaptive radiation and may demonstrate convergence, but uncertainty about phylogenetic relationships within the group has made it difficult to assess such evolutionary patterns. We examine the phylogenetic relationships of the Hawaii creeper ( Oreomystis mana ), a bird that in a suite of morphological, ecological and behavioural traits closely resembles the Kauai creeper ( Oreomystis bairdi ), but whose mitochondrial DNA (mtDNA) and osteology suggest a relationship with the amakihis ( Hemignathus in part) and akepas ( Loxops ). We analysed nuclear DNA sequence data from 11 relevant honeycreeper taxa and one outgroup to test whether the character contradiction results from historical hybridization and mtDNA introgression, or convergent evolution. We found no evidence of past hybridization, a phenomenon that remains undocumented in Hawaiian honeycreepers, and confirmed mtDNA and osteological evidence that the Hawaii creeper is most closely related to the amakihis and akepas. Thus, the morphological, ecological and behavioural similarities between the evolutionarily distant Hawaii and Kauai creepers represent an extreme example of convergent evolution and demonstrate how natural selection can lead to repeatable evolutionary outcomes.


2012 ◽  
Vol 22 (24) ◽  
pp. 2362-2368 ◽  
Author(s):  
Moritz Muschick ◽  
Adrian Indermaur ◽  
Walter Salzburger

Sign in / Sign up

Export Citation Format

Share Document