cichlid fishes
Recently Published Documents


TOTAL DOCUMENTS

490
(FIVE YEARS 55)

H-INDEX

69
(FIVE YEARS 4)

Author(s):  
Naoko Kurata ◽  
Michael Hickerson ◽  
Sandra Hoffberg ◽  
Ned Gardiner ◽  
Melanie L.J. Stiassny ◽  
...  

Rivers provide excellent models to understand how species diversity is generated and maintained across heterogeneous habitats. The lower Congo River (LCR) consists of a dynamic hydroscape exhibiting extraordinary aquatic biodiversity, endemicity, and ecological specialization. Previous studies have suggested that the numerous high-energy rapids throughout the LCR form physical barriers to gene flow, thus facilitating diversification and speciation, and generating ichthyofaunal diversity. However, this hypothesis has not been fully explored using genome-wide SNPs for fish species distributed across the LCR. In this study, we examined four species of lamprologine cichlids endemic to the LCR, of which three are sequentially distributed along the LCR without range overlap. Using genome-wide SNP data, we tested the hypotheses that high-energy rapids serve as physical barriers to gene flow that generate genetic divergence at inter- and intraspecific levels, and that gene flow occurs primarily in a downstream direction. Our results are consistent with the prediction that the rapids sometimes serve to reduce gene flow, but also suggest that at certain temporal and spatial scales, they may also act as promoters of gene flow. Furthermore, we detected both upstream and downstream gene flow between some populations of Lamprologus tigripictilis as well as hybridization between congeneric species. These results suggest that powerful high-energy rapids may therefore provide occasional multidirectional dispersal opportunities for riverine cichlid fishes, highlighting the complexity of factors driving evolutionary processes in the LCR.


2021 ◽  
Vol 7 (45) ◽  
Author(s):  
Alexandra A.-T. Weber ◽  
Jelena Rajkov ◽  
Kolja Smailus ◽  
Bernd Egger ◽  
Walter Salzburger

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Grégoire Vernaz ◽  
Milan Malinsky ◽  
Hannes Svardal ◽  
Mingliu Du ◽  
Alexandra M. Tyers ◽  
...  

AbstractEpigenetic variation modulates gene expression and can be heritable. However, knowledge of the contribution of epigenetic divergence to adaptive diversification in nature remains limited. The massive evolutionary radiation of Lake Malawi cichlid fishes displaying extensive phenotypic diversity despite extremely low sequence divergence is an excellent system to study the epigenomic contribution to adaptation. Here, we present a comparative genome-wide methylome and transcriptome study, focussing on liver and muscle tissues in phenotypically divergent cichlid species. In both tissues we find substantial methylome divergence among species. Differentially methylated regions (DMR), enriched in evolutionary young transposons, are associated with transcription changes of ecologically-relevant genes related to energy expenditure and lipid metabolism, pointing to a link between dietary ecology and methylome divergence. Unexpectedly, half of all species-specific DMRs are shared across tissues and are enriched in developmental genes, likely reflecting distinct epigenetic developmental programmes. Our study reveals substantial methylome divergence in closely-related cichlid fishes and represents a resource to study the role of epigenetics in species diversification.


2021 ◽  
Author(s):  
Leah DeLorenzo ◽  
Destiny Mathews ◽  
A. Allyson Brandon ◽  
Mansi Joglekar ◽  
Aldo Carmona Baez ◽  
...  

Divergence along the benthic-pelagic axis is one of the most widespread and repeated patterns of morphological variation in fishes, producing body shape diversity associated with ecology and swimming mechanics. This ecological shift is also the first stage of the explosive adaptive radiation of cichlid fishes in the East African Rift Lakes. We use two hybrid crosses of cichlids (Metriaclima sp. x Aulonocara sp. and Labidochromis sp. x Labeotropheus sp., >975 animals total) along the benthic-pelagic ecomorphological axis to determine the genetic basis of body shape diversification. Using a series of both linear and geometric shape measurements, we identify 55 quantitative trait loci (QTL) that underlie various aspects of body shape variation associated with benthic-pelagic divergence. These QTL are spread throughout the genome, each explain 3.0-7.2% of phenotypic variation, and are largely modular. Further, QTL are distinct both between these two crosses of Lake Malawi cichlids and compared to previously identified QTL for body shape in fishes such as sticklebacks. We find that body shape is controlled by many genes of small effects. In all, we find that convergent benthic and pelagic body phenotypes commonly observed across fish clades are most likely due to distinct genetic and molecular mechanisms.


Aquaculture ◽  
2021 ◽  
pp. 737637
Author(s):  
A. Ciezarek ◽  
Ford AGP ◽  
G.J. Etherington ◽  
N. Kasozi ◽  
M. Malinsky ◽  
...  

2021 ◽  
Vol 7 (36) ◽  
Author(s):  
Athimed El Taher ◽  
Fabrizia Ronco ◽  
Michael Matschiner ◽  
Walter Salzburger ◽  
Astrid Böhne

Biology ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 797
Author(s):  
Nikol Kmentová ◽  
Christoph Hahn ◽  
Stephan Koblmüller ◽  
Holger Zimmermann ◽  
Jiří Vorel ◽  
...  

Little phylogeographic structure is presumed for highly mobile species in pelagic zones. Lake Tanganyika is a unique ecosystem with a speciose and largely endemic fauna famous for its remarkable evolutionary history. In bathybatine cichlid fishes, the pattern of lake-wide population differentiation differs among species. We assessed the congruence between the phylogeographic structure of bathybatine cichlids and their parasitic flatworm Cichlidogyrus casuarinus to test the magnifying glass hypothesis. Additionally, we evaluated the use of a PoolSeq approach to study intraspecific variation in dactylogyrid monogeneans. The lake-wide population structure of C. casuarinus ex Hemibates stenosoma was assessed based on a portion of the cox1 gene combined with morphological characterisation. Additionally, intraspecific mitogenomic variation among 80 parasite samples from one spatially constrained metapopulation was assessed using shotgun NGS. While no clear geographic genetic structure was detected in parasites, both geographic and host-related phenotypic variation was apparent. The incongruence with the genetic north-south gradient observed in H. stenosoma may be explained by the broad host range of this flatworm including eupelagic bathybatine host species that form panmictic populations across the lake. In addition, we present the first parasite mitogenome from Lake Tanganyika and propose a methodological framework for studying the intraspecific mitogenomic variation of dactylogyrid monogeneans.


2021 ◽  
Vol 109 (2) ◽  
Author(s):  
Ronald G. Oldfield ◽  
Jacob Hooks ◽  
Jeffrey Sommer ◽  
Shelly C. McCain ◽  
William I. Lutterschmidt ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document