scholarly journals A computational framework for cortical microtubule dynamics in realistically shaped plant cells

2018 ◽  
Vol 14 (2) ◽  
pp. e1005959 ◽  
Author(s):  
Bandan Chakrabortty ◽  
Ikram Blilou ◽  
Ben Scheres ◽  
Bela M. Mulder
2017 ◽  
Author(s):  
Bandan Chakrabortty ◽  
Ben Scheres ◽  
Bela Mulder

AbstractPlant morphogenesis is strongly dependent on the directional growth and the subsequent oriented division of individual cells. It has been shown that the plant cortical microtubule array plays a key role in controlling both these processes. This ordered structure emerges as the collective result of stochastic interactions between large numbers of dynamic microtubules. To elucidate this complex self-organization process a number of analytical and computational approaches to study the dynamics of cortical microtubules have been proposed. To date, however, these models have been restricted to 2D planes or geometrically simple surfaces in 3D, which strongly limits their applicability as plant cells display a wide variety of shapes. This limitation is even more acute, as both local as well as global geometrical features of cells are expected to influence the overall organization of the array. Here we describe a framework for efficiently simulating microtubule dynamics on triangulated approximations of arbitrary three dimensional surfaces. This allows the study of microtubule array organization on realistic cell surfaces obtained by segmentation of microscopic images. We validate the framework against expected or known results for the spherical and cubical geometry. We then use it to systematically study the individual contributions of global geometry, edge-induced catastrophes and cell face-induced stability to array organization in a cuboidal geometry. Finally, we apply our framework to analyze the highly non-trivial geometry of leaf pavement cells of Nicotiana benthamiana and Hedera helix. We show that our simulations can predict multiple features of the array structure in these cells, revealing, among others, strong constraints on the orientation of division planes.


2021 ◽  
Vol 2 (1) ◽  
pp. 100301
Author(s):  
Fei Du ◽  
Feng Zhao ◽  
Jan Traas ◽  
Yuling Jiao

Author(s):  
Mehdi Doumane ◽  
Léia Colin ◽  
Alexis Lebecq ◽  
Aurélie Fangain ◽  
Joseph Bareille ◽  
...  

ABSTRACTPhosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] is a low abundant lipid present at the plasma membrane of eukaryotic cells. Extensive studies in animal cells revealed the pleiotropic functions of PI(4,5)P2. In plant cells, PI(4,5)P2 is involved in various cellular processes including the regulation of cell polarity and tip growth, clathrin-mediated endocytosis, polar auxin transport, actin dynamics or membrane-contact sites. To date, most studies investigating the role of PI(4,5)P2 in plants have relied on mutants lacking enzymes responsible for PI(4,5)P2 synthesis and degradation. However, such genetic perturbations only allow steady-state analysis of plants undergoing their life cycle in PI(4,5)P2 deficient conditions and the corresponding mutants are likely to induce a range of non-causal (untargeted) effects driven by compensatory mechanisms. In addition, there are no small molecule inhibitors that are available in plants to specifically block the production of this lipid. Thus, there is currently no system to fine tune PI(4,5)P2 content in plant cells. Here we report a genetically encoded and inducible synthetic system, iDePP (Inducible Depletion of PI(4,5)P2 in Plants), that efficiently removes PI(4,5)P2 from the plasma membrane in different organs of Arabidopsis thaliana, including root meristem, root hair and shoot apical meristem. We show that iDePP allows the inducible depletion of PI(4,5)P2 in less than three hours. Using this strategy, we reveal that PI(4,5)P2 is critical for cortical microtubule organization. Together, we propose that iDePP is a simple and efficient genetic tool to test the importance of PI(4,5)P2 in given cellular or developmental responses but also to evaluate the importance of this lipid in protein localization.Research OrganismA. thaliana


Author(s):  
A.R. Hardham ◽  
B.E.S. Gunning

Microtubules in the plant cell cortex are usually aligned parallel to microfibrils of cellulose that are being deposited in the cell wall, and are considered to function in guiding or orienting cellulose synthetase complexes that lie in or on the plasma membrane. The cellulose component is largely responsible for the mechanical reaction of the wall to turgor forces, thereby determining cell size and shape, and therefore the role of the cortical microtubules is a fundamental part of the overall morphogenetic process in plants. It is important to determine the structure of cortical arrays of microtubules and to learn how the cell regulates their development, neither of these aspects having been investigated adequately since the original description likened the microtubules to “hundreds of hoops around the cell”.


2007 ◽  
Vol 104 (14) ◽  
pp. 5854-5859 ◽  
Author(s):  
S. DeBolt ◽  
R. Gutierrez ◽  
D. W. Ehrhardt ◽  
C. V. Melo ◽  
L. Ross ◽  
...  

2018 ◽  
Vol 13 (1) ◽  
pp. e1422468 ◽  
Author(s):  
Kouichi Soga ◽  
Kazuyuki Wakabayashi ◽  
Takayuki Hoson

Sign in / Sign up

Export Citation Format

Share Document