cortical microtubules
Recently Published Documents


TOTAL DOCUMENTS

290
(FIVE YEARS 25)

H-INDEX

49
(FIVE YEARS 2)

Cells ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 145
Author(s):  
Sefi Bar-Sinai ◽  
Eduard Belausov ◽  
Vikas Dwivedi ◽  
Einat Sadot

The distribution of myosin VIII ATM1 tail in association with the plasma membrane is often observed in coordination with that of cortical microtubules (MTs). The prevailing hypothesis is that coordination between the organization of cortical MTs and proteins in the membrane results from the inhibition of free lateral diffusion of the proteins by barriers formed by MTs. Since the positioning of myosin VIII tail in the membrane is relatively stable, we ask: can it affect the organization of MTs? Myosin VIII ATM1 tail co-localized with remorin 6.6, the position of which in the plasma membrane is also relatively stable. Overexpression of myosin VIII ATM1 tail led to a larger fraction of MTs with a lower rate of orientation dispersion. In addition, collisions between MTs and cortical structures labeled by ATM1 tail or remorin 6.6 were observed. Collisions between EB1 labeled MTs and ATM1 tail clusters led to four possible outcomes: 1—Passage of MTs through the cluster; 2—Decreased elongation rate; 3—Disengagement from the membrane followed by a change in direction; and 4—retraction. EB1 tracks became straighter in the presence of ATM1 tail. Taken together, collisions of MTs with ATM1 tail labeled structures can contribute to their coordinated organization.


2021 ◽  
Vol 78 (6) ◽  
pp. 426-433
Author(s):  
G.V. Shevchenko ◽  

In order to identify the mechanism of functioning of the tubulin cytoskeleton, we have investigated the impact of clinorotation on cortical microtubules organization in the process of cell differentiation in growth zones of plant roots of Zea mays and Beta vulgaris. The similar organization of cortical and endoplasmic microtubules’ network in both species is noted. Clinorotation did not significantly change the organization of microtubules in meristem cells and the central elongation root zone. However, in the distal elongation zone of roots, both Z. mays and B. vulgaris expressed deviations of individual microtubules from the ordered transverse organization (at an angle greater than 45º). This deviation of the microtubules is likely caused by clinorotation and results in discoordination of root growth under these conditions. In addition, it has been found that the scope of destruction of the MT network by taxol in the root cells of both species is not dependent on clinorotation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yuliya Krasylenko ◽  
George Komis ◽  
Sofiia Hlynska ◽  
Tereza Vavrdová ◽  
Miroslav Ovečka ◽  
...  

Strigolactones are plant hormones regulating cytoskeleton-mediated developmental events in roots, such as lateral root formation and elongation of root hairs and hypocotyls. The latter process was addressed herein by the exogenous application of a synthetic strigolactone, GR24, and an inhibitor of strigolactone biosynthesis, TIS108, on hypocotyls of wild-type Arabidopsis and a strigolactone signaling mutant max2-1 (more axillary growth 2-1). Owing to the interdependence between light and strigolactone signaling, the present work was extended to seedlings grown under a standard light/dark regime, or under continuous darkness. Given the essential role of the cortical microtubules in cell elongation, their organization and dynamics were characterized under the conditions of altered strigolactone signaling using fluorescence microscopy methods with different spatiotemporal capacities, such as confocal laser scanning microscopy (CLSM) and structured illumination microscopy (SIM). It was found that GR24-dependent inhibition of hypocotyl elongation correlated with changes in cortical microtubule organization and dynamics, observed in living wild-type and max2-1 seedlings stably expressing genetically encoded fluorescent molecular markers for microtubules. Quantitative assessment of microscopic datasets revealed that chemical and/or genetic manipulation of strigolactone signaling affected microtubule remodeling, especially under light conditions. The application of GR24 in dark conditions partially alleviated cytoskeletal rearrangement, suggesting a new mechanistic connection between cytoskeletal behavior and the light-dependence of strigolactone signaling.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiangli Wang ◽  
Yong Fu ◽  
Wandy L. Beatty ◽  
Meisheng Ma ◽  
Alan Brown ◽  
...  

2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Veronica Giourieva ◽  
Emmanuel Panteris

Abstract Background Cortical microtubules regulate cell expansion by determining cellulose microfibril orientation in the root apex of Arabidopsis thaliana. While the regulation of cell wall properties by cortical microtubules is well studied, the data on the influence of cell wall to cortical microtubule organization and stability remain scarce. Studies on cellulose biosynthesis mutants revealed that cortical microtubules depend on Cellulose Synthase A (CESA) function and/or cell expansion. Furthermore, it has been reported that cortical microtubules in cellulose-deficient mutants are hypersensitive to oryzalin. In this work, the persistence of cortical microtubules against anti-microtubule treatment was thoroughly studied in the roots of several cesa mutants, namely thanatos, mre1, any1, prc1-1 and rsw1, and the Cellulose Synthase Interacting 1 protein (csi1) mutant pom2-4. In addition, various treatments with drugs affecting cell expansion were performed on wild-type roots. Whole mount tubulin immunolabeling was applied in the above roots and observations were performed by confocal microscopy. Results Cortical microtubules in all mutants showed statistically significant increased persistence against anti-microtubule drugs, compared to those of the wild-type. Furthermore, to examine if the enhanced stability of cortical microtubules was due to reduced cellulose biosynthesis or to suppression of cell expansion, treatments of wild-type roots with 2,6-dichlorobenzonitrile (DCB) and Congo red were performed. After these treatments, cortical microtubules appeared more resistant to oryzalin, than in the control. Conclusions According to these findings, it may be concluded that inhibition of cell expansion, irrespective of the cause, results in increased microtubule stability in A. thaliana root. In addition, cell expansion does not only rely on cortical microtubule orientation but also plays a regulatory role in microtubule dynamics, as well. Various hypotheses may explain the increased cortical microtubule stability under decreased cell expansion such as the role of cell wall sensors and the presence of less dynamic cortical microtubules.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiangli Wang ◽  
Yong Fu ◽  
Wandy L. Beatty ◽  
Meisheng Ma ◽  
Alan Brown ◽  
...  

AbstractIn living cells, microtubules (MTs) play pleiotropic roles, which require very different mechanical properties. Unlike the dynamic MTs found in the cytoplasm of metazoan cells, the specialized cortical MTs from Toxoplasma gondii, a prevalent human pathogen, are extraordinarily stable and resistant to detergent and cold treatments. Using single-particle cryo-EM, we determine their ex vivo structure and identify three proteins (TrxL1, TrxL2 and SPM1) as bona fide microtubule inner proteins (MIPs). These three MIPs form a mesh on the luminal surface and simultaneously stabilize the tubulin lattice in both longitudinal and lateral directions. Consistent with previous observations, deletion of the identified MIPs compromises MT stability and integrity under challenges by chemical treatments. We also visualize a small molecule like density at the Taxol-binding site of β-tubulin. Our results provide the structural basis to understand the stability of cortical MTs and suggest an evolutionarily conserved mechanism of MT stabilization from the inside.


2021 ◽  
Author(s):  
Ke Zhou

AbstractHelical growth broadly exists in immobile plants to support their limited movement, and Arabidopsis seedling root exhibiting natural left-handedness helical growth is considered as a simplified model for investigating this interesting behavior. Efforts have been made for understanding the mechanism of root helical growth and consequent root waving and skewing on tilted and impenetrable surface, and several models have been established. Here, previous reports are reviewed and a straightforward torsions-driven mechanism has been emphasized, and additional experiments have been performed to fill up the gaps of this theory in our study.This study implies that, torsions originating from handedness of both cortical microtubules and cellulose microfibrils play central role in root handed helical growth. Different from torsions directly provided by handed assembled cortical microtubules, torsions originating from right-handed assembled cellulose microfibrils are relaxed by their cross-linking with pectin within cell wall, but only exhibited when their cross-linking is interrupted due to damaged cell wall integrity. To topologically relax these torsions, supercoils of cortical microtubules and/or cellulose microfibrils exhibiting as oblique alignments are formed in root cells, which alter the orientation of root cell files and generate handed helical roots. Working together with gravitropic response, relaxation of torsions originating from helical roots drives roots to elongate with handedness, which therefore produces waved and skewed roots on tilted and impenetrable surface.


Author(s):  
Huifang Ma ◽  
Liyuan Xu ◽  
Ying Fu ◽  
Lei Zhu

Floral organ development is fundamental to sexual reproduction in angiosperms. Many key floral regulators (most of which are transcription factors) have been identified and shown to modulate floral meristem determinacy and floral organ identity, but not much is known about the regulation of floral organ growth, which is a critical process by which organs to achieve appropriate morphologies and fulfill their functions. Spatial and temporal control of anisotropic cell expansion following initial cell proliferation is important for organ growth. Cortical microtubules are well known to have important roles in plant cell polar growth/expansion and have been reported to guide the growth and shape of sepals and petals. In this study, we identified two homolog proteins, QWRF1 and QWRF2, which are essential for floral organ growth and plant fertility. We found severely deformed morphologies and symmetries of various floral organs as well as a significant reduction in the seed setting rate in the qwrf1qwrf2 double mutant, although few flower development defects were seen in qwrf1 or qwrf2 single mutants. QWRF1 and QWRF2 display similar expression patterns and are both localized to microtubules in vitro and in vivo. Furthermore, we found altered cortical microtubule organization and arrangements in qwrf1qwrf2 cells, consistent with abnormal cell expansion in different floral organs, which eventually led to poor fertility. Our results suggest that QWRF1 and QWRF2 are likely microtubule-associated proteins with functional redundancy in fertility and floral organ development, which probably exert their effects via regulation of cortical microtubules and anisotropic cell expansion.


Sign in / Sign up

Export Citation Format

Share Document