scholarly journals Denervation Causes Fiber Atrophy and Myosin Heavy Chain Co-Expression in Senescent Skeletal Muscle

PLoS ONE ◽  
2012 ◽  
Vol 7 (1) ◽  
pp. e29082 ◽  
Author(s):  
Sharon L. Rowan ◽  
Karolina Rygiel ◽  
Fennigje M. Purves-Smith ◽  
Nathan M. Solbak ◽  
Douglas M. Turnbull ◽  
...  
2010 ◽  
Vol 42 ◽  
pp. 25 ◽  
Author(s):  
Sharon L. Rowan ◽  
Nathan M. Solbak ◽  
Maddy Purves-Smith ◽  
Russell T. Hepple

1998 ◽  
Vol 75 (2) ◽  
pp. 135-147 ◽  
Author(s):  
Kotaro Yoshimura ◽  
William M. Kuzon ◽  
Kiyonori Harii

2003 ◽  
Vol 86 (2) ◽  
pp. 201-206 ◽  
Author(s):  
Teet Seene ◽  
Priit Kaasik ◽  
Ando Pehme ◽  
Karin Alev ◽  
Eva-Maria Riso

1987 ◽  
Vol 7 (11) ◽  
pp. 4100-4114
Author(s):  
P Gunning ◽  
E Hardeman ◽  
R Wade ◽  
P Ponte ◽  
W Bains ◽  
...  

We evaluated the extent to which muscle-specific genes display identical patterns of mRNA accumulation during human myogenesis. Cloned satellite cells isolated from adult human skeletal muscle were expanded in culture, and RNA was isolated from low- and high-confluence cells and from fusing cultures over a 15-day time course. The accumulation of over 20 different transcripts was compared in these samples with that in fetal and adult human skeletal muscle. The expression of carbonic anhydrase 3, myoglobin, HSP83, and mRNAs encoding eight unknown proteins were examined in human myogenic cultures. In general, the expression of most of the mRNAs was induced after fusion to form myotubes. However, several exceptions, including carbonic anhydrase and myoglobin, showed no detectable expression in early myotubes. Comparison of all transcripts demonstrated little, if any, identity of mRNA accumulation patterns. Similar variability was also seen for mRNAs which were also expressed in nonmuscle cells. Accumulation of mRNAs encoding alpha-skeletal, alpha-cardiac, beta- and gamma-actin, total myosin heavy chain, and alpha- and beta-tubulin also displayed discordant regulation, which has important implications for sarcomere assembly. Cardiac actin was the only muscle-specific transcript that was detected in low-confluency cells and was the major alpha-actin mRNA at all times in fusing cultures. Skeletal actin was transiently induced in fusing cultures and then reduced by an order of magnitude. Total myosin heavy-chain mRNA accumulation lagged behind that of alpha-actin. Whereas beta- and gamma-actin displayed a sharp decrease after initiation of fusion and thereafter did not change, alpha- and beta-tubulin were transiently induced to a high level during the time course in culture. We conclude that each gene may have its own unique determinants of transcript accumulation and that the phenotype of a muscle may not be determined so much by which genes are active or silent but rather by the extent to which their transcript levels are modulated. Finally, we observed that patterns of transcript accumulation established within the myotube cultures were consistent with the hypothesis that myoblasts isolated from adult tissue recapitulate a myogenic developmental program. However, we also detected a transient appearance of adult skeletal muscle-specific transcripts in high-confluence myoblast cultures. This indicates that the initial differentiation of these myoblasts may reflect a more complex process than simple recapitulation of development.


2001 ◽  
Vol 280 (3) ◽  
pp. C637-C645 ◽  
Author(s):  
David L. Allen ◽  
Brooke C. Harrison ◽  
Carol Sartorius ◽  
William C. Byrnes ◽  
Leslie A. Leinwand

The fast skeletal IIb gene is the source of most myosin heavy chain (MyHC) in adult mouse skeletal muscle. We have examined the effects of a null mutation in the IIb MyHC gene on the growth and morphology of mouse skeletal muscle. Loss in muscle mass of several head and hindlimb muscles correlated with amounts of IIb MyHC expressed in that muscle in wild types. Decreased mass was accompanied by decreases in mean fiber number, and immunological and ultrastructural studies revealed fiber pathology. However, mean cross-sectional area was increased in all fiber types, suggesting compensatory hypertrophy. Loss of muscle and body mass was not attributable to impaired chewing, and decreased food intake as a softer diet did not prevent the decrease in body mass. Thus loss of the major MyHC isoform produces fiber loss and fiber pathology reminiscent of muscle disease.


Sign in / Sign up

Export Citation Format

Share Document