scholarly journals Parameter Scaling for Epidemic Size in a Spatial Epidemic Model with Mobile Individuals

PLoS ONE ◽  
2016 ◽  
Vol 11 (12) ◽  
pp. e0168127 ◽  
Author(s):  
Chiyori T. Urabe ◽  
Gouhei Tanaka ◽  
Kazuyuki Aihara ◽  
Masayasu Mimura
1997 ◽  
Vol 34 (3) ◽  
pp. 698-710 ◽  
Author(s):  
Håkan Andersson ◽  
Boualem Djehiche

We study the long-term behaviour of a sequence of multitype general stochastic epidemics, converging in probability to a deterministic spatial epidemic model, proposed by D. G. Kendall. More precisely, we use branching and deterministic approximations in order to study the asymptotic behaviour of the total size of the epidemics as the number of types and the number of individuals of each type both grow to infinity.


2009 ◽  
Vol 19 (4) ◽  
pp. 1656-1685 ◽  
Author(s):  
Rick Durrett ◽  
Daniel Remenik

1997 ◽  
Vol 34 (03) ◽  
pp. 698-710
Author(s):  
Håkan Andersson ◽  
Boualem Djehiche

We study the long-term behaviour of a sequence of multitype general stochastic epidemics, converging in probability to a deterministic spatial epidemic model, proposed by D. G. Kendall. More precisely, we use branching and deterministic approximations in order to study the asymptotic behaviour of the total size of the epidemics as the number of types and the number of individuals of each type both grow to infinity.


2021 ◽  
Author(s):  
Meng Yan ◽  
Qingshan Zhang

Abstract In this paper, we are concerned with the spatial epidemic model with infected-taxis in which the susceptible individuals could avoid the infected ones. The spatial pattern for the resulted model is investigated under homogeneous Neumann boundary condition. We gain the condition for spatial pattern induced by diffusion term and infected-taxis term. Moreover, we obtain the condition for the occurrence of pattern formations induced by infected-taxis, in which the diffusion-driven Turing instability case is excluded. We give numerical examples to support the theoretical scheme.


Sign in / Sign up

Export Citation Format

Share Document