Purification and Reconstitution of the Ryanodine-Sensitive Ca2+ Release Channel Complex from Muscle Sarcoplasmic Reticulum

2003 ◽  
pp. 287-306 ◽  
Author(s):  
F. Anthony Lai ◽  
Gerhard Meissner
1999 ◽  
Vol 90 (3) ◽  
pp. 835-843 ◽  
Author(s):  
Hirochika Komai ◽  
Andrew J. Lokuta

Background Although various local anesthetics can cause histologic damage to skeletal muscle when injected intramuscularly, bupivacaine appears to have an exceptionally high rate of myotoxicity. Research has suggested that an effect of bupivacaine on sarcoplasmic reticulum Ca2+ release is involved in its myotoxicity, but direct evidence is lacking. Furthermore, it is not known whether the toxicity depends on the unique chemical characteristics of bupivacaine and whether the toxicity is found only in skeletal muscle. Methods The authors studied the effects of bupivacaine and the similarly lipid-soluble local anesthetic, tetracaine, on the Ca2+ release channel-ryanodine receptor of sarcoplasmic reticulum in swine skeletal and cardiac muscle. [3H]Ryanodine binding was used to measure the activity of the Ca2+ release channel-ryanodine receptors in microsomes of both muscles. Results Bupivacaine enhanced (by two times at 5 mM) and inhibited (66% inhibition at 10 mM) [3H]ryanodine binding to skeletal muscle microsomes. In contrast, only inhibitory effects were observed with cardiac microsomes (about 3 mM for half-maximal inhibition). Tetracaine, which inhibits [3H]ryanodine binding to skeletal muscle microsomes, also inhibited [3H]ryanodine binding to cardiac muscle microsomes (half-maximal inhibition at 99 microM). Conclusions Bupivacaine's ability to enhance Ca2+ release channel-ryanodine receptor activity of skeletal muscle sarcoplasmic reticulum most likely contributes to the myotoxicity of this local anesthetic. Thus, the pronounced myotoxicity of bupivacaine may be the result of this specific effect on Ca2+ release channel-ryanodine receptor superimposed on a nonspecific action on lipid bilayers to increase the Ca2+ permeability of sarcoplasmic reticulum membranes, an effect shared by all local anesthetics. The specific action of tetracaine to inhibit Ca2+ release channel-ryanodine receptor activity may in part counterbalance the nonspecific action, resulting in moderate myotoxicity.


1998 ◽  
Vol 112 (1) ◽  
pp. 55-69 ◽  
Author(s):  
Bhavna Tanna ◽  
William Welch ◽  
Luc Ruest ◽  
John L. Sutko ◽  
Alan J. Williams

The binding of ryanodine to a high affinity site on the sarcoplasmic reticulum Ca2+-release channel results in a dramatic alteration in both gating and ion handling; the channel enters a high open probability, reduced-conductance state. Once bound, ryanodine does not dissociate from its site within the time frame of a single channel experiment. In this report, we describe the interactions of a synthetic ryanoid, 21-amino-9α-hydroxy-ryanodine, with the high affinity ryanodine binding site on the sheep cardiac sarcoplasmic reticulum Ca2+-release channel. The interaction of 21-amino-9α-hydroxy-ryanodine with the channel induces the occurrence of a characteristic high open probability, reduced-conductance state; however, in contrast to ryanodine, the interaction of this ryanoid with the channel is reversible under steady state conditions, with dwell times in the modified state lasting seconds. By monitoring the reversible interaction of this ryanoid with single channels under voltage clamp conditions, we have established a number of novel features of the ryanoid binding reaction. (a) Modification of channel function occurs when a single molecule of ryanoid binds to the channel protein. (b) The ryanoid has access to its binding site only from the cytosolic side of the channel and the site is available only when the channel is open. (c) The interaction of 21-amino-9α-hydroxy-ryanodine with its binding site is influenced strongly by transmembrane voltage. We suggest that this voltage dependence is derived from a voltage-driven conformational alteration of the channel protein that changes the affinity of the binding site, rather than the translocation of the ryanoid into the voltage drop across the channel.


Sign in / Sign up

Export Citation Format

Share Document