channel protein
Recently Published Documents


TOTAL DOCUMENTS

579
(FIVE YEARS 57)

H-INDEX

64
(FIVE YEARS 5)

2021 ◽  
Vol 20 (11) ◽  
pp. 2287-2292
Author(s):  
Zhenping Xiao ◽  
Mengjun Liao ◽  
Yunwu He ◽  
Yonglin Li ◽  
Wuzhou Yang ◽  
...  

Purpose: To determine the mechanism involved in pregabalin-induced alleviation of postherpetic neuralgia in a rat model.Methods: Ninety-sixty healthy Sprague-Dawley (SD) rats were assigned to sham, model andpregabalin groups (32 rats per group). A model of postherpetic neuralgia (PN) was established. The expressions of IL-1β and TNF-α in spinal cord tissue were determined 7 days after administration of treatments. The proportions of fluorescence areas in astrocytes in the dorsal horn, prefrontal lobe and hippocampus, and level of spinal cord TRPV1 channel protein in each group were evaluated.Results: Relative to model rats, IL-1β and TNF-α in spinal cord of pregabalin rats were significantly reduced (p < 0.05). The areas of fluorescence in astrocytes in dorsal horn of spinal cord, prefrontal lobe and hippocampus of model group were significantly increased, relative to sham, but were decreased in rats in pregabalin group (p < 0.05).Conclusion: Pregabalin significantly alleviates postherpetic neuralgia via mechanisms which may be related to the inflammatory response of spinal dorsal horn and downregulation of TRPV1 channel protein expression. This finding may be useful in developing new drugs for alleviating postherpetic neuralgia.


2021 ◽  
Author(s):  
Chunling Xue ◽  
Yang Gao ◽  
Xuechun Li ◽  
Mingjia Zhang ◽  
Ying Yang ◽  
...  

Abstract Background: There is increasing evidence that mesenchymal stem cells (MSCs) help shape the tumor microenvironment and promote tumor progression, and ion channels might play a critical role in this process. Methods: Gene chip was used for a general analysis of gene expression changes in MSC-transformed CAF cells (MT-CAFs). We screened out the ion channel protein TRPC3 with WB detecion and lentivirus knockdown. Calcium influx was detected by two-photon microscope. MTS and Transwell detected growth, migration, and invasion of MT-CAFs and HCT116 cells. Bioinformatic tools and clinical specimens were to assess the relationship between TRPC3 and surrvival.Results: We screened out the ion channel protein TRPC3 with significantly increased expression, which caused calcium influx, and further activated the NF-KB signaling pathway. Knockdown or inhibition of TRPC3 in MSCs significantly reduced the activation of NF-KB, and decreased the growth, migration, and invasion of MT-CAFs. After TRPC3 knockdown, the ability of MT- CAFs to promote tumor migration and invasion was impaired. Conversely, the upregulation of TRPC3 expression in MT-CAFs had the opposite effect. In vivo, TRPC3 expressed on MSCs also contributed to the tumorigenesis and progression of cancer cells. In addition, the Oncomine and GEPIA databases showed that TRPC3 expression is higher in colon cancer tissue compared with normal colon tissues, and is positively correlated with the expression of the CAF genes alpha-smooth muscle (α-SMA/ACTA2) and fibroblast activation protein Alpha (FAP). The disease-free survival of patients with positive TRPC3 expression in mesenchymal cells was significantly shorter than in those with negative expression. Conclusions: These results indicate that TRPC3 expressed on MT-CAFs plays a critical role in tumor progression via the NF-KB signaling pathway, and is correlated with poor prognosis in colon cancer patients. Therefore, TRPC3 may be a novel therapeutic target for the treatment of colon cancer.


2021 ◽  
Author(s):  
Huirong Liu ◽  
Yang Li ◽  
Yan Sun ◽  
Mingming Yue ◽  
Ming Gao ◽  
...  

The abnormality of large-conductance calcium-activated potassium channels (BK channels) is an important factor in inducing vascular inflammation. BK channel agonists can readily recover BK channel function and improve vascular inflammation. However, it is not clear how to improve BK dysfunction caused by downregulation of BK channel protein expression. This study found that angiotensin II-1 receptor autoantibodies (AT1-AA), which are widely present in the body of various types of cardiovascular diseases, can down-regulate the expression of BK channel protein and induce vascular inflammation. Further research found that the elevated neural precursor cells expressed developmentally downregulated 4-like (NEDD4L) protein level is involved in the down-regulation of BK channel α subunit (BKα) protein level by AT1-AA. Bioinformatics analysis and experiments have confirmed that miR-339-3p plays an irreplaceable role in the high expression of NEDD4L and the low expression of BKα, and aggravates the vascular inflammation induced by AT1-AA. Overall, AT1-AA increased miR-339-3p expression (targeting BKα via the miR-339-3p/NEDD4L axis or miR-339-3p alone), reduced BKα protein expression in VSMCs, and induced vascular inflammation. The results of the study indicate that miR-339-3p may become a new target for reversing vascular inflammation in AT1-AA-positive patients.


Author(s):  
Dave Sonya ◽  
Zhou An

Repressive regulation of potassium channel genes by Polycomb group (PcG) proteins contributes to PcG protein-mediated neuroprotection against neuronal ischemic injury, as seen in an ischemic stroke. Here we asked the question whether Trithorax group (TrxG) proteins, the antagonistic partners of PcG proteins (i.e, epigenetic activators targeting the same genes) may also regulate potassium channels. Results of patch-clamp studies on cultured neuronal cells showed that inhibition of TrxG protein MLL-1 led to an increase in potassium channel activity, an unexpected effect for a presumed gene activator. In contrast, decreased sodium currents were observed with MLL-1 inhibition. Increased or decreased levels of potassium channel protein Kv2.1 or sodium channel protein Nav1.2, respectively, were seen with MLL-1 inhibition, as determined by immunocytochemistry. These results, for the first time, demonstrate an involvement of TrxG protein MLL-1 in regulating neuronal ion channels, potentially repressing potassium channel genes.


Neoplasia ◽  
2021 ◽  
Vol 23 (8) ◽  
pp. 754-765
Author(s):  
Saya Ozaki ◽  
Akihiro Umakoshi ◽  
Hajime Yano ◽  
Shota Ohsumi ◽  
Yutaro Sumida ◽  
...  

2021 ◽  
Vol 35 (S1) ◽  
Author(s):  
Manfred Philipp ◽  
Ezekiel Olumuyide ◽  
Blessing Babalola ◽  
Janet Gonzalez

PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0250095
Author(s):  
Ningyong Xu ◽  
Linn Ayers ◽  
Viktoriya Pastukh ◽  
Mikhail Alexeyev ◽  
Troy Stevens ◽  
...  

Collective migration of endothelial cells is important for wound healing and angiogenesis. During such migration, each constituent endothelial cell coordinates its magnitude and direction of migration with its neighbors while retaining intercellular adhesion. Ensuring coordination and cohesion involves a variety of intra- and inter-cellular signaling processes. However, the role of permeation of extracellular Na+ in collective cell migration remains unclear. Here, we examined the effect of Na+ permeation in collective migration of pulmonary artery endothelial cell (PAEC) monolayers triggered by either a scratch injury or a barrier removal over 24 hours. In the scratch assay, PAEC monolayers migrated in two approximately linear phases. In the first phase, wound closure started with fast speed which then rapidly reduced within 5 hours after scratching. In the second phase, wound closure maintained at slow and stable speed from 6 to 24 hours. In the absence of extracellular Na+, the wound closure distance was reduced by >50%. Fewer cells at the leading edge protruded prominent lamellipodia. Beside transient gaps, some sustained interendothelial gaps also formed and progressively increased in size over time, and some fused with adjacent gaps. In the absence of both Na+ and scratch injury, PAEC monolayer migrated even more slowly, and interendothelial gaps obviously increased in size towards the end. Pharmacological inhibition of the epithelial Na+ channel (ENaC) using amiloride reduced wound closure distance by 30%. Inhibition of both the ENaC and the Na+/Ca2+ exchanger (NCX) using benzamil further reduced wound closure distance in the second phase and caused accumulation of floating particles in the media. Surprisingly, pharmacological inhibition of the Ca2+ release-activated Ca2+ (CRAC) channel protein 1 (Orai1) using GSK-7975A, the transient receptor potential channel protein 1 and 4 (TRPC1/4) using Pico145, or both Orai1 and TRPC1/4 using combined GSK-7975A and Pico145 treatment did not affect wound closure distance dramatically. Nevertheless, the combined treatment appeared to cause accumulation of floating particles. Note that GSK-7975A also inhibits small inward Ca2+ currents via Orai2 and Orai3 channels, whereas Pico145 also blocks TRPC4, TRPC5, and TRPC1/5 channels. By contrast, gene silence of Orai1 by shRNAs led to a 25% reduction of wound closure in the first 6 hours but had no effect afterwards. However, in the absence of extracellular Na+ or cellular injury, Orai1 did not affect PAEC collective migration. Overall, the data reveal that Na+ permeation into cells contributes to PAEC monolayer collective migration by increasing lamellipodial formation, reducing accumulation of floating particles, and improving intercellular adhesion.


Sign in / Sign up

Export Citation Format

Share Document