scholarly journals Impacts of climate change on forest fire risk in Paraná State-Brazil

2014 ◽  
pp. 1182-1192
Author(s):  
Antonio Carlos Batista ◽  
Alexandre França Tetto ◽  
Flavio Deppe ◽  
Leocádio Grodzki
2021 ◽  
Author(s):  

Forest and wildland fires are a natural part of ecosystems worldwide, but large fires in particular can cause societal, economic and ecological disruption. Fires are an important source of greenhouse gases and black carbon that can further amplify and accelerate climate change. In recent years, large forest fires in Sweden demonstrate that the issue should also be considered in other parts of Fennoscandia. This final report of the project “Forest fires in Fennoscandia under changing climate and forest cover (IBA ForestFires)” funded by the Ministry for Foreign Affairs of Finland, synthesises current knowledge of the occurrence, monitoring, modelling and suppression of forest fires in Fennoscandia. The report also focuses on elaborating the role of forest fires as a source of black carbon (BC) emissions over the Arctic and discussing the importance of international collaboration in tackling forest fires. The report explains the factors regulating fire ignition, spread and intensity in Fennoscandian conditions. It highlights that the climate in Fennoscandia is characterised by large inter-annual variability, which is reflected in forest fire risk. Here, the majority of forest fires are caused by human activities such as careless handling of fire and ignitions related to forest harvesting. In addition to weather and climate, fuel characteristics in forests influence fire ignition, intensity and spread. In the report, long-term fire statistics are presented for Finland, Sweden and the Republic of Karelia. The statistics indicate that the amount of annually burnt forest has decreased in Fennoscandia. However, with the exception of recent large fires in Sweden, during the past 25 years the annually burnt area and number of fires have been fairly stable, which is mainly due to effective fire mitigation. Land surface models were used to investigate how climate change and forest management can influence forest fires in the future. The simulations were conducted using different regional climate models and greenhouse gas emission scenarios. Simulations, extending to 2100, indicate that forest fire risk is likely to increase over the coming decades. The report also highlights that globally, forest fires are a significant source of BC in the Arctic, having adverse health effects and further amplifying climate warming. However, simulations made using an atmospheric dispersion model indicate that the impact of forest fires in Fennoscandia on the environment and air quality is relatively minor and highly seasonal. Efficient forest fire mitigation requires the development of forest fire detection tools including satellites and drones, high spatial resolution modelling of fire risk and fire spreading that account for detailed terrain and weather information. Moreover, increasing the general preparedness and operational efficiency of firefighting is highly important. Forest fires are a large challenge requiring multidisciplinary research and close cooperation between the various administrative operators, e.g. rescue services, weather services, forest organisations and forest owners is required at both the national and international level.


2017 ◽  
Vol 97 ◽  
pp. 73-80
Author(s):  
Valérie Sanseverino-Godfrin ◽  
Emmanuel Garbolino ◽  
Guillermo Hinojos-Mendoza

Sign in / Sign up

Export Citation Format

Share Document