black carbon
Recently Published Documents


TOTAL DOCUMENTS

4210
(FIVE YEARS 2029)

H-INDEX

143
(FIVE YEARS 32)

2022 ◽  
Vol 807 ◽  
pp. 150397
Author(s):  
Fan Zhang ◽  
Lijuan Zhang ◽  
Mingxi Pan ◽  
Xinyue Zhong ◽  
Enbo Zhao ◽  
...  

2022 ◽  
Vol 14 (2) ◽  
pp. 959
Author(s):  
Yanjiao Zheng ◽  
Lijuan Zhang ◽  
Wenliang Li ◽  
Fan Zhang ◽  
Xinyue Zhong

The amount of black carbon (BC) on snow surface can significantly reduce snow surface albedo in the visible-light range and change the surface radiative forcing effect. Therefore, it is key to study regional and global climate changes to understand the BC concentration on snow. In this study, we simulated the BC concentration on the surface snow of northeast China using an asymptotic radiative transfer model. From 2001 to 2016, the BC concentration showed no significant increase, with an average increase of 82.104 ng/g compared with that in the early 21st century. The concentration of BC in December was the largest (1344.588 ng/g) and decreased in January and February (1248.619 ng/g and 983.635 ng/g, respectively). The high black carbon content centers were concentrated in the eastern and central regions with dense populations and concentrated industries, with a concentration above 1200 ng/g, while the BC concentration in the southwest region with less human activities was the lowest (below 850 ng/g), which indicates that human activities played an important role in snow BC pollution. Notably, Heilongjiang province has the highest concentration, which may be related to its atmospheric stability in winter. These findings suggest that the BC pollution in northeast China has been aggravated from 2001 to 2016. It is estimated that the snow surface albedo will decrease by 16.448% due to the BC pollution of snow in northeast China. The problem of radiative forcing caused by black carbon to snow reflectivity cannot be ignored.


2022 ◽  
Vol 22 (1) ◽  
pp. 561-575
Author(s):  
Jiaxing Sun ◽  
Zhe Wang ◽  
Wei Zhou ◽  
Conghui Xie ◽  
Cheng Wu ◽  
...  

Abstract. Atmospheric aerosols play an important role in the radiation balance of the earth–atmosphere system. However, our knowledge of the long-term changes in equivalent black carbon (eBC) and aerosol optical properties in China is very limited. Here we analyze the 9-year measurements of eBC and aerosol optical properties from 2012 to 2020 in Beijing, China. Our results showed large reductions in eBC by 71 % from 6.25 ± 5.73 µg m−3 in 2012 to 1.80 ± 1.54 µg m−3 in 2020 and 47 % decreases in the light extinction coefficient (bext, λ = 630 nm) of fine particles due to the Clean Air Action Plan that was implemented in 2013. The seasonal and diurnal variations of eBC illustrated the most significant reductions in the fall and at nighttime, respectively. ΔeBC / ΔCO also showed an annual decrease from ∼ 7 to 4 ng m−3 ppbv−1 and presented strong seasonal variations with high values in spring and fall, indicating that primary emissions in Beijing have changed significantly. As a response to the Clean Air Action Plan, single-scattering albedo (SSA) showed a considerable increase from 0.79 ± 0.11 to 0.88 ± 0.06, and mass extinction efficiency (MEE) increased from 3.2 to 3.8 m2 g−1. These results highlight the increasing importance of scattering aerosols in radiative forcing and a future challenge in visibility improvement due to enhanced MEE. Brown carbon (BrC) showed similar changes and seasonal variations to eBC during 2018–2020. However, we found a large increase of secondary BrC in the total BrC in most seasons, particularly in summer with the contribution up to 50 %, demonstrating an enhanced role of secondary formation in BrC in recent years. The long-term changes in eBC and BrC have also affected the radiative forcing effect. The direct radiative forcing (ΔFR) of BC decreased by 67 % from +3.36 W m−2 in 2012 to +1.09 W m−2 in 2020, and that of BrC decreased from +0.30 to +0.17 W m−2 during 2018–2020. Such changes might have important implications for affecting aerosol–boundary layer interactions and the improvement of future air quality.


2022 ◽  
Vol 15 (1) ◽  
pp. 219-249
Author(s):  
Mahtab Majdzadeh ◽  
Craig A. Stroud ◽  
Christopher Sioris ◽  
Paul A. Makar ◽  
Ayodeji Akingunola ◽  
...  

Abstract. The photolysis module in Environment and Climate Change Canada's online chemical transport model GEM-MACH (GEM: Global Environmental Multi-scale – MACH: Modelling Air quality and Chemistry) was improved to make use of the online size and composition-resolved representation of atmospheric aerosols and relative humidity in GEM-MACH, to account for aerosol attenuation of radiation in the photolysis calculation. We coupled both the GEM-MACH aerosol module and the MESSy-JVAL (Modular Earth Submodel System) photolysis module, through the use of the online aerosol modeled data and a new Mie lookup table for the model-generated extinction efficiency, absorption and scattering cross sections of each aerosol type. The new algorithm applies a lensing correction factor to the black carbon absorption efficiency (core-shell parameterization) and calculates the scattering and absorption optical depth and asymmetry factor of black carbon, sea salt, dust and other internally mixed components. We carried out a series of simulations with the improved version of MESSy-JVAL and wildfire emission inputs from the Canadian Forest Fire Emissions Prediction System (CFFEPS) for 2 months, compared the model aerosol optical depth (AOD) output to the previous version of MESSy-JVAL, satellite data, ground-based measurements and reanalysis products, and evaluated the effects of AOD calculations and the interactive aerosol feedback on the performance of the GEM-MACH model. The comparison of the improved version of MESSy-JVAL with the previous version showed significant improvements in the model performance with the implementation of the new photolysis module and with adopting the online interactive aerosol concentrations in GEM-MACH. Incorporating these changes to the model resulted in an increase in the correlation coefficient from 0.17 to 0.37 between the GEM-MACH model AOD 1-month hourly output and AERONET (Aerosol Robotic Network) measurements across all the North American sites. Comparisons of the updated model AOD with AERONET measurements for selected Canadian urban and industrial sites, specifically, showed better correlation coefficients for urban AERONET sites and for stations located further south in the domain for both simulation periods (June and January 2018). The predicted monthly averaged AOD using the improved photolysis module followed the spatial patterns of MERRA-2 reanalysis (Modern-Era Retrospective analysis for Research and Applications – version 2), with an overall underprediction of AOD over the common domain for both seasons. Our study also suggests that the domain-wide impacts of direct and indirect effect aerosol feedbacks on the photolysis rates from meteorological changes are considerably greater (3 to 4 times) than the direct aerosol optical effect on the photolysis rate calculations.


Author(s):  
M. Roxana Sierra‐Hernández ◽  
Emilie Beaudon ◽  
Stacy E. Porter ◽  
Ellen Mosley‐Thompson ◽  
Lonnie G. Thompson
Keyword(s):  
Ice Core ◽  

2022 ◽  
Author(s):  
Ovid Oktavian Krüger ◽  
Bruna A. Holanda ◽  
Sourangsu Chowdhury ◽  
Andrea Pozzer ◽  
David Walter ◽  
...  

Abstract. The abrupt reduction in human activities during the first lockdown of the COVID-19 pandemic created unprecedented atmospheric conditions. To quantify the changes in lower tropospheric air pollution, we conducted the BLUESKY aircraft campaign and measured vertical profiles of black carbon (BC) aerosol particles over Western and Southern Europe in May and June 2020. We compared the results to similar measurements of the EMeRGe EU campaign performed in July 2017 and found that the BC mass concentrations (MBC) were reduced by about 47 %. For BC particle number concentrations, we found comparable reductions. Based on EMAC chemistry-transport model simulations, we find differences in meteorological conditions and flight patterns responsible for about 7 % of the reductions in MBC, whereas 40 % can be attributed to reduced anthropogenic emissions. Our results reflect the strong and immediate positive effect of changes in human activities on air quality and the atmospheric role of BC aerosols as a major air pollutant and climate forcing agent in the Anthropocene.


2022 ◽  
Author(s):  
Hitoshi Matsui ◽  
Tatsuhiro Mori ◽  
Sho Ohata ◽  
Nobuhiro Moteki ◽  
Naga Oshima ◽  
...  

Abstract. Black carbon (BC) particles in the Arctic contribute to rapid warming of the Arctic by heating the atmosphere and snow and ice surfaces. Understanding the source contributions to Arctic BC is therefore important, but they are not well understood, especially those for atmospheric and snow radiative effects. Here we estimate simultaneously the source contributions of Arctic BC to near-surface and vertically integrated atmospheric BC mass concentrations (MBC_SRF and MBC_COL), BC deposition flux (MBC_DEP), and BC radiative effects at the top of the atmosphere and snow surface (REBC_TOA and REBC_SNOW), and show that the source contributions to these five variables are highly different. In our estimates, Siberia makes the largest contribution to MBC_SRF, MBC_DEP, and REBC_SNOW in the Arctic (defined as > 70° N), accounting for 70 %, 53 %, and 43 %, respectively. In contrast, Asia’s contributions to MBC_COL and REBC_TOA are largest, accounting for 38 % and 45 %, respectively. In addition, the contributions of biomass burning sources are larger (24−34 %) to MBC_DEP, REBC_TOA, and REBC_SNOW, which are highest from late spring to summer, and smaller (4.2−14 %) to MBC_SRF and MBC_COL, whose concentrations are highest from winter to spring. These differences in source contributions to these five variables are due to seasonal variations in BC emission, transport, and removal processes and solar radiation, as well as to differences in radiative effect efficiency (radiative effect per unit BC mass) among sources. Radiative effect efficiency varies by a factor of up to 4 among sources (1465−5439 W g–1) depending on lifetimes, mixing states, and heights of BC and seasonal variations of emissions and solar radiation. As a result, source contributions to radiative effects and mass concentrations (i.e., REBC_TOA and MBC_COL, respectively) are substantially different. The results of this study demonstrate the importance of considering differences in the source contributions of Arctic BC among mass concentrations, deposition, and atmospheric and snow radiative effects for accurate understanding of Arctic BC and its climate impacts.


Sign in / Sign up

Export Citation Format

Share Document