scholarly journals Cohomological invariants of hyperelliptic curves of even genus

2017 ◽  
pp. 424-443
Author(s):  
Roberto Pirisi
2021 ◽  
Vol 9 ◽  
Author(s):  
Andrea Di Lorenzo ◽  
Roberto Pirisi

Abstract Using the theory of cohomological invariants for algebraic stacks, we compute the Brauer group of the moduli stack of hyperelliptic curves ${\mathcal {H}}_g$ over any field of characteristic $0$ . In positive characteristic, we compute the part of the Brauer group whose order is prime to the characteristic of the base field.


2015 ◽  
Vol 18 (1) ◽  
pp. 258-265 ◽  
Author(s):  
Jennifer S. Balakrishnan

The Coleman integral is a $p$-adic line integral that encapsulates various quantities of number theoretic interest. Building on the work of Harrison [J. Symbolic Comput. 47 (2012) no. 1, 89–101], we extend the Coleman integration algorithms in Balakrishnan et al. [Algorithmic number theory, Lecture Notes in Computer Science 6197 (Springer, 2010) 16–31] and Balakrishnan [ANTS-X: Proceedings of the Tenth Algorithmic Number Theory Symposium, Open Book Series 1 (Mathematical Sciences Publishers, 2013) 41–61] to even-degree models of hyperelliptic curves. We illustrate our methods with numerical examples computed in Sage.


2008 ◽  
Vol 2 (8) ◽  
pp. 859-885 ◽  
Author(s):  
Yann Bugeaud ◽  
Maurice Mignotte ◽  
Samir Siksek ◽  
Michael Stoll ◽  
Szabolcs Tengely

Sign in / Sign up

Export Citation Format

Share Document