scholarly journals Hepatitis C Virus Nonstructural 5A Protein Interacts with Telomere Length Regulation Protein: Implications for Telomere Shortening in Patients Infected with HCV

Author(s):  
Yun-Sook Lim ◽  
Men T.N. Nguyen ◽  
Thuy X. Pham ◽  
Trang T.X. Huynh ◽  
Eun-Mee Park ◽  
...  
2021 ◽  
Author(s):  
Samantha L. Sholes ◽  
Kayarash Karimian ◽  
Ariel Gershman ◽  
Thomas J. Kelly ◽  
Winston Timp ◽  
...  

We developed a method to tag telomeres and measure telomere length by nanopore sequencing in the yeast S. cerevisiae. Nanopore allows long read sequencing through the telomere, subtelomere and into unique chromosomal sequence, enabling assignment of telomere length to a specific chromosome end. We observed chromosome end specific telomere lengths that were stable over 120 cell divisions. These stable chromosome specific telomere lengths may be explained by stochastic clonal variation or may represent a new biological mechanism that maintains equilibrium unique to each chromosomes end. We examined the role of RIF1 and TEL1 in telomere length regulation and found that TEL1 is epistatic to RIF1 at most telomeres, consistent with the literature. However, at telomeres that lack subtelomeric Y' sequences, tel1Δ rif1Δ double mutants had a very small, but significant, increase in telomere length compared to the tel1Δ single mutant, suggesting an influence of Y' elements on telomere length regulation. We sequenced telomeres in a telomerase-null mutant (est2Δ) and found the minimal telomere length to be around 75bp. In these est2Δ mutants there were many apparent telomere recombination events at individual telomeres before the generation of survivors, and these events were significantly reduced in est2Δ rad52Δ double mutants. The rate of telomere shortening in the absence of telomerase was similar across all chromosome ends at about 5 bp per generation. This new method gives quantitative, high resolution telomere length measurement at each individual chromosome end, suggests possible new biological mechanisms regulating telomere length, and provides capability to test new hypotheses.


2021 ◽  
pp. gr.275868.121
Author(s):  
Samantha L. Sholes ◽  
Kayarash Karimian ◽  
Ariel Gershman ◽  
Thomas J. Kelly ◽  
Winston Timp ◽  
...  

We developed a method to tag telomeres and measure telomere length by nanopore sequencing in the yeast S. cerevisiae. Nanopore allows long-read sequencing through the telomere, subtelomere and into unique chromosomal sequence, enabling assignment of telomere length to a specific chromosome end. We observed chromosome end specific telomere lengths that were stable over 120 cell divisions. These stable chromosome-specific telomere lengths may be explained by slow clonal variation or may represent a new biological mechanism that maintains equilibrium unique to each chromosome end. We examined the role of RIF1 and TEL1 in telomere length regulation and found that TEL1 is epistatic to RIF1 at most telomeres, consistent with the literature. However, at telomeres that lack subtelomeric Y’ sequences, tel1Δ rif1Δ double mutants had a very small, but significant, increase in telomere length compared to the tel1Δ single mutant, suggesting an influence of Y’ elements on telomere length regulation. We sequenced telomeres in a telomerase-null mutant (est2Δ) and found the minimal telomere length to be around 75 bp. In these est2Δ mutants there were apparent telomere recombination events at individual telomeres before the generation of survivors, and these events were significantly reduced in est2Δ rad52Δ double mutants. The rate of telomere shortening in the absence of telomerase was similar across all chromosome ends at about 5 bp per generation. This new method gives quantitative, high resolution telomere length measurement at each individual chromosome end, and suggests possible new biological mechanisms regulating telomere length.


2020 ◽  
Vol 48 (22) ◽  
pp. 12792-12803
Author(s):  
Jia-Cheng Liu ◽  
Qian-Jin Li ◽  
Ming-Hong He ◽  
Can Hu ◽  
Pengfei Dai ◽  
...  

Abstract Telomeres at the ends of eukaryotic chromosomes are essential for genome integrality and stability. In order to identify genes that sustain telomere maintenance independently of telomerase recruitment, we have exploited the phenotype of over-long telomeres in the cells that express Cdc13-Est2 fusion protein, and examined 195 strains, in which individual non-essential gene deletion causes telomere shortening. We have identified 24 genes whose deletion results in dramatic failure of Cdc13-Est2 function, including those encoding components of telomerase, Yku, KEOPS and NMD complexes, as well as quite a few whose functions are not obvious in telomerase activity regulation. We have characterized Swc4, a shared subunit of histone acetyltransferase NuA4 and chromatin remodeling SWR1 (SWR1-C) complexes, in telomere length regulation. Deletion of SWC4, but not other non-essential subunits of either NuA4 or SWR1-C, causes significant telomere shortening. Consistently, simultaneous disassembly of NuA4 and SWR1-C does not affect telomere length. Interestingly, inactivation of Swc4 in telomerase null cells accelerates both telomere shortening and senescence rates. Swc4 associates with telomeric DNA in vivo, suggesting a direct role of Swc4 at telomeres. Taken together, our work reveals a distinct role of Swc4 in telomere length regulation, separable from its canonical roles in both NuA4 and SWR1-C.


2021 ◽  
Vol 49 (7) ◽  
pp. 3967-3980
Author(s):  
Calla B Shubin ◽  
Rini Mayangsari ◽  
Ariel D Swett ◽  
Carol W Greider

AbstractIn budding yeast, Rif1 negatively regulates telomere length, but the mechanism of this regulation has remained elusive. Previous work identified several functional domains of Rif1, but none of these has been shown to mediate telomere length. To define Rif1 domains responsible for telomere regulation, we localized truncations of Rif1 to a single specific telomere and measured telomere length of that telomere compared to bulk telomeres. We found that a domain in the N-terminus containing HEAT repeats, Rif1177–996, was sufficient for length regulation when tethered to the telomere. Charged residues in this region were previously proposed to mediate DNA binding. We found that mutation of these residues disrupted telomere length regulation even when Rif1 was tethered to the telomere. Mutation of other conserved residues in this region, which were not predicted to interact with DNA, also disrupted telomere length maintenance, while mutation of conserved residues distal to this region did not. Our data suggest that conserved amino acids in the region from 436 to 577 play a functional role in telomere length regulation, which is separate from their proposed DNA binding function. We propose that the Rif1 HEAT repeats region represents a protein-protein binding interface that mediates telomere length regulation.


2010 ◽  
Vol 30 (22) ◽  
pp. 5325-5334 ◽  
Author(s):  
Meghan T. Mitchell ◽  
Jasmine S. Smith ◽  
Mark Mason ◽  
Sandy Harper ◽  
David W. Speicher ◽  
...  

ABSTRACT The essential yeast protein Cdc13 facilitates chromosome end replication by recruiting telomerase to telomeres, and together with its interacting partners Stn1 and Ten1, it protects chromosome ends from nucleolytic attack, thus contributing to genome integrity. Although Cdc13 has been studied extensively, the precise role of its N-terminal domain (Cdc13N) in telomere length regulation remains unclear. Here we present a structural, biochemical, and functional characterization of Cdc13N. The structure reveals that this domain comprises an oligonucleotide/oligosaccharide binding (OB) fold and is involved in Cdc13 dimerization. Biochemical data show that Cdc13N weakly binds long, single-stranded, telomeric DNA in a fashion that is directly dependent on domain oligomerization. When introduced into full-length Cdc13 in vivo, point mutations that prevented Cdc13N dimerization or DNA binding caused telomere shortening or lengthening, respectively. The multiple DNA binding domains and dimeric nature of Cdc13 offer unique insights into how it coordinates the recruitment and regulation of telomerase access to the telomeres.


2016 ◽  
Author(s):  
Carol W Greider

Telomere length is regulated around an equilibrium set point. Telomeres shorten during replication and are lengthened by telomerase. Disruption of the length equilibrium leads to disease, thus it is important to understand the mechanisms that regulate length at the molecular level. The prevailing protein counting model for regulating telomerase access to elongate the telomere does not explain accumulating evidence of a role of DNA replication in telomere length regulation. Here I present an alternative model: the replication fork model that can explain how passage of a replication fork and regulation of origin firing affect telomere length.


2015 ◽  
Vol 29 (11) ◽  
pp. 1164-1174 ◽  
Author(s):  
Lili Pan ◽  
Katie Hildebrand ◽  
Cian Stutz ◽  
Nicolas Thomä ◽  
Peter Baumann

Sign in / Sign up

Export Citation Format

Share Document