telomere maintenance
Recently Published Documents


TOTAL DOCUMENTS

914
(FIVE YEARS 305)

H-INDEX

74
(FIVE YEARS 8)

Author(s):  
Tomas Aramburu ◽  
Joseph Kelich ◽  
Cory Rice ◽  
Emmanuel Skordalakes
Keyword(s):  

2021 ◽  
Vol 15 (12) ◽  
pp. e0010041
Author(s):  
Ester Poláková ◽  
Amanda T. S. Albanaz ◽  
Alexandra Zakharova ◽  
Tatiana S. Novozhilova ◽  
Evgeny S. Gerasimov ◽  
...  

Background Telomeres are indispensable for genome stability maintenance. They are maintained by the telomere-associated protein complex, which include Ku proteins and a telomerase among others. Here, we investigated a role of Ku80 in Leishmania mexicana. Leishmania is a genus of parasitic protists of the family Trypanosomatidae causing a vector-born disease called leishmaniasis. Methodology/Principal findings We used the previously established CRISPR/Cas9 system to mediate ablation of Ku80- and Ku70-encoding genes in L. mexicana. Complete knock-outs of both genes were confirmed by Southern blotting, whole-genome Illumina sequencing, and RT-qPCR. Resulting telomeric phenotypes were subsequently investigated using Southern blotting detection of terminal restriction fragments. The genome integrity in the Ku80- deficient cells was further investigated by whole-genome sequencing. Our work revealed that telomeres in the ΔKu80 L. mexicana are elongated compared to those of the wild type. This is a surprising finding considering that in another model trypanosomatid, Trypanosoma brucei, they are shortened upon ablation of the same gene. A telomere elongation phenotype has been documented in other species and associated with a presence of telomerase-independent alternative telomere lengthening pathway. Our results also showed that Ku80 appears to be not involved in genome stability maintenance in L. mexicana. Conclusion/Significance Ablation of the Ku proteins in L. mexicana triggers telomere elongation, but does not have an adverse impact on genome integrity.


Genes ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 83
Author(s):  
Soffía R. Gunnarsdottir ◽  
Hördur Bjarnason ◽  
Birna Thorvaldsdottir ◽  
Felice Paland ◽  
Margrét Steinarsdottir ◽  
...  

Our previous studies showed an association between monoallelic BRCA2 germline mutations and dysfunctional telomeres in epithelial mammary cell lines and increased risk of breast cancer diagnosis for women with BRCA2 999del5 germline mutation and short telomeres in blood cells. In the current study, we analyzed telomere dysfunction in lymphoid cell lines from five BRCA2 999del5 mutation carriers and three Fanconi Anemia D1 patients by fluorescence in situ hybridization (FISH). Metaphase chromosomes were harvested from ten lymphoid cell lines of different BRCA2 genotype origin and analyzed for telomere loss (TL), multitelomeric signals (MTS), interstitial telomere signals (ITS) and extra chromosomal telomere signals (ECTS). TL, ITS and ECTS were separately found to be significantly increased gradually between the BRCA2+/+, BRCA2+/- and BRCA2-/- lymphoid cell lines. MTS were found to be significantly increased between the BRCA2+/+ and the BRCA2+/- heterozygous (p < 0.0001) and the BRCA2-/- lymphoid cell lines (p < 0.0001) but not between the BRCA2 mutated genotypes. Dysfunctional telomeres were found to be significantly increased in a stepwise manner between the BRCA2 genotypes indicating an effect of BRCA2 haploinsufficiency on telomere maintenance.


2021 ◽  
Author(s):  
Antoine STIER ◽  
Bin-Yan Hsu ◽  
Nina Cossin-Sevrin ◽  
Natacha Garcin ◽  
Suvi Ruuskanen

Climate change is increasing both the average ambient temperature and the frequency and severity of heat waves. While direct mortality induced by heat waves is increasingly reported, sub-lethal effects are also likely to impact wild populations. We hypothesized that accelerated ageing could be a cost of being exposed to higher ambient temperature, especially in early-life when thermoregulatory capacities are not fully developed. We tested this hypothesis in wild great tit (Parus major) by experimentally increasing nest box temperature by ca. 2 degrees during postnatal growth and measuring telomere length, a biomarker of cellular ageing predictive of survival prospects in many bird species. While increasing early-life temperature does not affect growth or survival to fledging, it accelerates telomere shortening and reduces medium-term survival from 34% to 19%. Heat-induced telomere shortening was not explained by oxidative stress, but more likely by an increase in energy demand (i.e. higher thyroid hormones levels, increased expression of glucocorticoid receptor, increased mitochondrial density) leading to a reduction in telomere maintenance mechanisms (i.e. decrease in the gene expression of telomerase and protective shelterin). Our results thus suggest that climate warming can affect ageing rate in wild birds, with potential impact on population dynamics and persistence.


2021 ◽  
Vol 3 (12) ◽  
Author(s):  
Saima Rashid ◽  
Tuana Oliveira Correia Mesquita ◽  
Malcolm Whiteway

The SAGA (Spt-Ada-Gcn5-acetyltransferase) is an evolutionary conserved multidomain co-activator complex involved in gene regulation through its histone acetyltransferase (HAT) and deubiquitinase (DUB) functions. It is well studied in Saccharomyces cerevisiae, and recent reports from humans and Drosophila expand its importance from gene transcription regulation to transcription elongation, protein stability and telomere maintenance. In Candida albicans, little is known about the components of the SAGA complex and their influence in morphogenesis and stress response. In this work, we analysed individual components of the SAGA complex, their role in morphogenesis and responses to different signalling cues. We initially analysed conditionally repressed strains of SAGA complex subunits involved in the HAT function of the complex: Tra1, Ngg1, Spt7, Spt8, Taf5, Taf6, Taf9, and Taf10. It appears that the Tra1 might be essential for the viability of C. albicans, as we failed to obtain homozygous deletions although it showed detectible growth in the conditionally repressed strain. Also, we observed that TBP- associated factors are essential in C. albicans, possibly due to their role in the transcription initiation factor TFIID instead of SAGA. We also detected that the Spt8 repressed mutant was extensively invasive in YPD at 300C while a repressed Ngg1 was considerably less invasive compared to its wild type. Also, we have seen that the mutations affecting TBP-binding ability confer susceptibility to drugs, temperature, osmotic, oxidative and DNA damage stress. Further, it seems that the modules of SAGA complex might have antagonistic roles in expression regulation but this needs more in-depth study.


Life ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1405
Author(s):  
Hueng-Chuen Fan ◽  
Fung-Wei Chang ◽  
Jeng-Dau Tsai ◽  
Kao-Min Lin ◽  
Chuan-Mu Chen ◽  
...  

Telomeres cap the ends of eukaryotic chromosomes and are indispensable chromatin structures for genome protection and replication. Telomere length maintenance has been attributed to several functional modulators, including telomerase, the shelterin complex, and the CST complex, synergizing with DNA replication, repair, and the RNA metabolism pathway components. As dysfunctional telomere maintenance and telomerase activation are associated with several human diseases, including cancer, the molecular mechanisms behind telomere length regulation and protection need particular emphasis. Cancer cells exhibit telomerase activation, enabling replicative immortality. Telomerase reverse transcriptase (TERT) activation is involved in cancer development through diverse activities other than mediating telomere elongation. This review describes the telomere functions, the role of functional modulators, the implications in cancer development, and the future therapeutic opportunities.


2021 ◽  
Author(s):  
Qixiang He ◽  
Xiuhua Lin ◽  
Bianca L Chavez ◽  
Benjamin L Lusk ◽  
Ci Ji Lim

Telomere replication and regulation protect mammalian chromosome ends and promote genome stability. An essential step in telomere maintenance is the C-strand fill-in process, which is the de novo synthesis of the complementary strand of the telomere overhang. This step is catalyzed by polymerase-alpha/primase complex (pol-α/primase) and coordinated by an accessory factor, CTC1-STN1-TEN1 (CST). Using cryogenic-electron microscopy single-particle analysis, we report the structure of the human telomere C-strand fill-in preinitiation complex (PIC) at 3.9 Å resolution. The structure reveals a CST and a pol-α/primase co-bound to a single telomere overhang, poised for de novo RNA primer synthesis. Upon PIC assembly, the pol-α/primase undergoes large conformation change from its apo-state; CST partitions the DNA and RNA catalytic centers of pol-α/primase into two separate domains and positions the 3' end of an extended telomere single-stranded DNA template towards the RNA catalytic center (PRIM1 or p49). The telomeric single-stranded DNA template is further positioned by the POLA1 (or p180) catalytically dead exonuclease domain. Together with CST, the exonuclease domain forms a tight-fit molecular tunnel for template direction. Given the structural homology of CST to Replication Protein A (RPA), our structure provides the structural basis for a new model of how pol-α/primase lagging-strand DNA synthesis is coordinated by single-stranded DNA-binding accessory factors.


2021 ◽  
Author(s):  
Michal Zimmermann ◽  
Cynthia Bernier ◽  
Beatrice Kaiser ◽  
Sara Fournier ◽  
Li Li ◽  
...  

Combinations of inhibitors of Ataxia Telangiectasia- and Rad3-related kinase (ATRi) and poly(ADP-ribose) polymerases (PARPi) synergistically kill tumor cells through modulation of complementary DNA repair pathways, but their tolerability is limited by hematological toxicities. To address this we performed a genome-wide CRISPR/Cas9 screen to identify genetic alterations that hypersensitize cells to a combination of the ATRi RP-3500 with PARPi, including deficiency in RNase H2, RAD51 paralog mutations or the Alternative Lengthening of Telomeres telomere maintenance mechanism. We show that RP-3500 and PARPi combinations kill cells carrying these genetic alterations at doses sub-therapeutic as single agents. We also demonstrate the mechanism of combination hypersensitivity in RNase H2-deficient cells, where we observe an irreversible replication catastrophe, allowing us to design a highly efficacious and tolerable in vivo dosing schedule. Altogether, we present a comprehensive dataset to inform development of ATRi and PARPi combinations and an experimental framework applicable to other drug combination strategies.


2021 ◽  
Author(s):  
Georgios C Stefos ◽  
Georgios Theodorou ◽  
Ioannis Politis

G-Quadruplex structures are non-B DNA structures that occur in regions carrying short runs of guanines. They are implicated in several biological processes including transcription, translation, replication and telomere maintenance as well as in several pathological conditions like cancer and thus they have gained the attention of the scientific community. The rise of the -omics era significantly affected the G-quadruplex research and the genome-wide characterization of G-Quadruplexes has been rendered a necessary first step towards applying genomics approaches for their study. While in human and several model organisms there is a considerable number of works studying genome-wide the DNA motifs with potential to form G-quadruplexes (G4-motifs), there is a total absence of any similar studies regarding livestock animals. The objectives of the present study were to provide a detailed characterization of the bovine genic G4-motifs distribution and properties and to suggest a possible mechanism for the delivery of G4 motifs in the genes. Our data indicate that the distribution of G4s within bovine genes and the annotation of said genes to Gene Ontology terms are similar to what is already shown for other organisms. By investigating their structural characteristics and polymorphism, it is obvious that the overall stability of the putative quadruplex structures is in line with the current notion in the G4 field. Similarly to human, the bovine G4s are overrepresented in specific LINE repeat elements, the L1_BTs in the case of cattle. We suggest these elements as vehicles for delivery of G4 motifs in the introns of the bovine genes. Lastly, it seems that a basis exists for connecting traits of agricultural importance to the genetic variation of G4 motifs, thus, cattle could become an interesting new model organism for G4-related genetic studies.


2021 ◽  
Author(s):  
◽  
Richard Little

<p>Translation initiation has been identified as a therapeutic target for many diseases including cancers, Alzheimer’s disease, viral infections and cachexia. One protein involved in this process is the eukaryotic initiation factor 4A (eIF4A), an RNA helicase that is integral for cap-dependent translation initiation. Multiple drugs that inhibit the normal function of eIF4A have been identified, with one currently entering clinical trials. Recent investigations into the effects of eIF4A inhibitor treatment, however, have used concentrations that significantly hinder cell proliferation and survival. However, applications in Alzheimer’s disease, viral infections and cachexia require much lower inhibitor concentrations. Current evidence shows that under these conditions, inhibition of eIF4A leads to disruption of translation of individual transcripts in a manner that is dependent on their sequence and structure. However, the cell-wide effects of eIF4A inhibition at these low concentrations is still not known, and so the mechanisms through which treatments for these diseases will function are not fully elucidated.  Using an expression-based analysis, we investigated the effects of mild perturbation of eIF4A through gene deletion mutations in yeast and low doses of the eIF4A inhibitor pateamine on human cells. With both these approaches we identify a range of expression changes in proteins throughout the proteostatic network, relating to processes such as translation, amino acid production, ribosome biogenesis, protein folding and protein degradation. Processes further removed from translation initiation were also found to be affected but differed between yeast and human cell line models, with energy metabolism being affected in yeast, and telomere maintenance and mRNA metabolism being affected in human cells. We also identified an mRNA 5′ untranslated region sequence that appears to confer a disproportionate reduction in expression only seen in pateamine treatment conditions. Through this approach we identify the key cellular effects of altered eIF4A function and demonstrate differences between reduced eIF4A function and pateamine inhibition.</p>


Sign in / Sign up

Export Citation Format

Share Document