Fracture Mechanics Model Applied to Shear Failure of Reinforced Concrete Beams Without Stirrups

2001 ◽  
Vol 98 (2) ◽  
2006 ◽  
Vol 33 (2) ◽  
pp. 161-168 ◽  
Author(s):  
M T Kazemi ◽  
V Broujerdian

A new expression for the shear capacity of reinforced concrete beams without stirrups was derived by calculating the aggregate interlock capacity across the major diagonal crack of the beam, a procedure somewhat similar to those based on the modified compression field theory. Two formulas were obtained from the simplification of this expression. All three relations capture the dependence of shear strength on the size of the beam, the ratio of shear span to beam depth, longitudinal reinforcement ratio, maximum aggregate size, and concrete strength. The limits of these formulas agree well with the limit solutions of shear failure load for very small and very large beams based on plastic and fracture mechanics solutions, respectively. The proposed relations were calibrated by least-squares fitting of the existing experimental database (consisting of 398 data points) and resulted in low coefficients of variation. The simplest version is suitable for design codes.Key words: reinforced concrete, shear strength, beams, aggregate interlock, crack opening, size effect.


2008 ◽  
Vol 2 (4) ◽  
pp. 462-472 ◽  
Author(s):  
Kentaro OHNO ◽  
Shinichiro SHIMOZONO ◽  
Yosuke SAWADA ◽  
Masayasu OHTSU

2012 ◽  
Vol 587 ◽  
pp. 36-41 ◽  
Author(s):  
S.F.A. Rafeeqi ◽  
S.U. Khan ◽  
N.S. Zafar ◽  
T. Ayub

In this paper, behaviour of nine (09) RC beams (including two control beams) after unbonding and exposing flexural reinforcement has been studied which were intentionally designed and detailed to observe flexural and shear failure. Beams have been divided into three groups based on failure mode and unbounded and exposed reinforcement. Beams have been tested under two-point loading up to failure. Experimental results are compared in terms of beam behaviour with respect to flexural capacity and failure mode which revealed that the exposed reinforcement does not altered flexural capacity significantly and unbondedness positively influences shear strength; however, serviceability performance of beams with unbonded and exposed reinforcement is less.


Sign in / Sign up

Export Citation Format

Share Document