scholarly journals Spectrum Sensing in Cognitive Radio by Use of Volume-Based Method

2018 ◽  
Vol 7 (2.17) ◽  
pp. 34
Author(s):  
C S. Preetham ◽  
Ch Mahesh ◽  
Ch Saranga Haripriya ◽  
Ramaraju Anirudh ◽  
M S. Sireesha

Spectrum sensing is the mission of finding the licensed user signal situation, i.e. to determine the existence and deficiency of primary (licensed) user signal, the recent publications random matrix theory algorithms performs better-quality in spectrum sensing. The RMT fundamental nature is to make use of the distributed extremal eigenvalues of the arrived signal sample covariance matrix (SMC), specifically, Tracy-Widom (TW) distribution which is useful to certain extent in spectrum sensing but demanding for numerical evaluations because there is absence of closed-form expression in it. The sample covariance matrix determinant is designed for two novel volume-based detectors or signal existence and deficiency cases are differentiated by using volume. Under the Gaussian noise postulation one of the detectors theoretical decision thresholds is perfectly calculated by using Random matrix theory. The volume-based detectors efficiency is shown in simulation results. 

Author(s):  
Alicja Dembczak-Kołodziejczyk ◽  
Anna Lytova

Given [Formula: see text], we study two classes of large random matrices of the form [Formula: see text] where for every [Formula: see text], [Formula: see text] are iid copies of a random variable [Formula: see text], [Formula: see text], [Formula: see text] are two (not necessarily independent) sets of independent random vectors having different covariance matrices and generating well concentrated bilinear forms. We consider two main asymptotic regimes as [Formula: see text]: a standard one, where [Formula: see text], and a slightly modified one, where [Formula: see text] and [Formula: see text] while [Formula: see text] for some [Formula: see text]. Assuming that vectors [Formula: see text] and [Formula: see text] are normalized and isotropic “in average”, we prove the convergence in probability of the empirical spectral distributions of [Formula: see text] and [Formula: see text] to a version of the Marchenko–Pastur law and the so-called effective medium spectral distribution, correspondingly. In particular, choosing normalized Rademacher random variables as [Formula: see text], in the modified regime one can get a shifted semicircle and semicircle laws. We also apply our results to the certain classes of matrices having block structures, which were studied in [G. M. Cicuta, J. Krausser, R. Milkus and A. Zaccone, Unifying model for random matrix theory in arbitrary space dimensions, Phys. Rev. E 97(3) (2018) 032113, MR3789138; M. Pernici and G. M. Cicuta, Proof of a conjecture on the infinite dimension limit of a unifying model for random matrix theory, J. Stat. Phys. 175(2) (2019) 384–401, MR3968860].


2010 ◽  
Vol 27 (2) ◽  
pp. 190-196 ◽  
Author(s):  
Lei Wang ◽  
Baoyu Zheng ◽  
Jingwu Cui ◽  
Chao Chen

2021 ◽  
pp. 223-234
Author(s):  
Qiyuan Chen ◽  
Yonghua Wang ◽  
Jiawei Zhuang ◽  
Yi Lyu ◽  
Zhixiong Li

Sign in / Sign up

Export Citation Format

Share Document