scholarly journals CONDITIONS ON UNIQUENESS OF LIMIT POINT AND COMPLETENESS IN CONE POLYGONAL METRIC SPACES

2021 ◽  
Vol 4 (1) ◽  
pp. 133-138
Author(s):  
Sie, Evan Setiawan ◽  
Mahmud Yunus
Keyword(s):  

This paper discusses cone polygonal metric spaces. We analyze some characteristics derived from convergence and Cauchyness of sequences. Our result consists of some conditions on uniqueness of limit point and completeness in cone polygonal metric spaces.

1969 ◽  
Vol 130 (1-6) ◽  
pp. 277-303 ◽  
Author(s):  
Aloysio Janner ◽  
Edgar Ascher

2016 ◽  
Vol 2017 (1) ◽  
pp. 17-30 ◽  
Author(s):  
Muhammad Usman Ali ◽  
◽  
Tayyab Kamran ◽  
Mihai Postolache ◽  
◽  
...  

2001 ◽  
Vol 37 (1-2) ◽  
pp. 169-184
Author(s):  
B. Windels

In 1930 Kuratowski introduced the measure of non-compactness for complete metric spaces in order to measure the discrepancy a set may have from being compact.Since then several variants and generalizations concerning quanti .cation of topological and uniform properties have been studied.The introduction of approach uniform spaces,establishes a unifying setting which allows for a canonical quanti .cation of uniform concepts,such as completeness,which is the subject of this article.


Author(s):  
Jagdish C. Chaudhary ◽  
Shailesh T. Patel

In this paper, we prove some common fixed point theorems in complete metric spaces for self mapping satisfying a contractive condition of Integral  type.


2013 ◽  
Vol 1 ◽  
pp. 200-231 ◽  
Author(s):  
Andrea C.G. Mennucci

Abstract In this paper we discuss asymmetric length structures and asymmetric metric spaces. A length structure induces a (semi)distance function; by using the total variation formula, a (semi)distance function induces a length. In the first part we identify a topology in the set of paths that best describes when the above operations are idempotent. As a typical application, we consider the length of paths defined by a Finslerian functional in Calculus of Variations. In the second part we generalize the setting of General metric spaces of Busemann, and discuss the newly found aspects of the theory: we identify three interesting classes of paths, and compare them; we note that a geodesic segment (as defined by Busemann) is not necessarily continuous in our setting; hence we present three different notions of intrinsic metric space.


2019 ◽  
Vol 10 (1) ◽  
pp. 151-158
Author(s):  
Bijay Kumar Singh ◽  
Pradeep Kumar Pathak

Sign in / Sign up

Export Citation Format

Share Document