scholarly journals Cloud Service Architecture Optimization Methodology for Telemedicine and e-Health Interoperability Framework

Author(s):  
Ábel Garai
Author(s):  
Mridul Paul ◽  
Ajanta Das

With the advancement of Cloud computing, the adoption of cloud service in various industries is fast increasing. This is evident in the healthcare domain where the adoption is on the rise recently. However, the research contribution in this domain has been limited to certain functions. While cloud can increase availability, reachability of services, it is critical to design the healthcare service before provisioning. Besides, it is important to formulate Service Level Agreements (SLAs) to ensure that consumers can get guaranteed service from the service provider. The objective of this paper is to design the cloud based smart services for patient diagnostics. This research specifically defines service architecture for patients, physicians and diagnostic centers. In order to measure the proposed services, metrics of each SLA parameter is described with its functional and non-functional requirements. This paper also explains a case study implementation of a basic patient service using Google App Engine.


2021 ◽  
Vol 12 (9) ◽  
pp. 474-489
Author(s):  
O. A. Kachanova ◽  
◽  
D. K. Levonevskiy ◽  

To grow crops in greenhouse complexes, it is necessary to maintain the microclimatic conditions required for these crops and monitor them. Automation of these processes is an urgent task, and for its solution it is necessary to use both hardware and software. The paper proposes a cloud service architecture for managing robotic vertical farms, which allows for reliable two-way data transfer between the greenhouse modules and the operator and can be used for growing crops both in vertical hydroponic installations and in single-level greenhouses of greenhouses. The business processes are described that allow you to understand and evaluate the principles of organizing monitoring and management of cultivation. On the basis of the developed architecture, software has been implemented, which has been tested in the tasks of managing the greenhouse complex and obtaining data on the microclimate. Thanks to the use of wireless networks, the absence of restrictions on the type and location of modules, duplication of functionality and data replication, such a system can be considered flexible in use and scalable.


Author(s):  
Longji Tang ◽  
Jing Dong ◽  
Yajing Zhao ◽  
Liang-Jie Zhang

2013 ◽  
Vol 818 ◽  
pp. 147-152
Author(s):  
Ying Xin Chen ◽  
Chun Bo Xie

When emergencies occur, there will be a lot of problems, such as information redundancy and the asymmetry of information in rescue organization, which seriously affect the efficiency of emergency management. To solve these problems, an emergency management system based on cloud computing is proposed, and cloud service architecture is designed, which will contribute to the optimization of emergency management model in China.


Author(s):  
Mridul Paul ◽  
Ajanta Das

With the advancement of Cloud computing, the adoption of cloud service in various industries is fast increasing. This is evident in the healthcare domain where the adoption is on the rise recently. However, the research contribution in this domain has been limited to certain functions. While cloud can increase availability, reachability of services, it is critical to design the healthcare service before provisioning. Besides, it is important to formulate Service Level Agreements (SLAs) to ensure that consumers can get guaranteed service from the service provider. The objective of this paper is to design the cloud based smart services for patient diagnostics. This research specifically defines service architecture for patients, physicians and diagnostic centers. In order to measure the proposed services, metrics of each SLA parameter is described with its functional and non-functional requirements. This paper also explains a case study implementation of a basic patient service using Google App Engine.


2019 ◽  
Vol 23 (2) ◽  
pp. 153-173
Author(s):  
M. Sadeq Jaafar

Purpose of research. The object of the study is a network cloud service built on the basis of a replicated database. Data in distributed computing systems are replicated in order to ensure the reliability of their storage, facilitate access to data as well as to improve the storage system performance. In this regard, the problem of analyzing the effectiveness of processing the queries to replicated databases in a network-based cloud environment, and, in particular, the problem of organizing priority query queues for updating databae copies (update requests) and for searching and reading information in databases (query-requests). The purpose of this work is to study and organize priority modes in a network distributed computing system with cloud service architecture.Methods. The study was conducted on the basis of two types of behavioural patterns: models based on Petri nets to describe and verify the functioning of a distributed computing system with replicated databases represented as a pool of resource units with several units, and models based on the GPSS simulation language for possible evaluation of passage of query time of each type in queues depending on the priority of queries.Results. Based on two simulation methods, the operation of a cloud system with database replicas was analyzed. In this system two distributed cloud computing systems interact: MANET Cloud based on a wireless network and Internet Cloud based on the Internet. These databases together are the basis of the DBaaSoD (Data Bases as a Service on Demand) cloud service (databases as a service organized at user’s query). To study this system the models of two classes were developed. The model based on Petri nets is designed to test the simulated distributed application for proper functioning. The decisions on the mapping of Petri nets on the architecture of computer networks are discussed. The simulation statistical model is used to compare the priority and non-priority maintenance modes of query- and update-requests by the criterion of average passage of time of queries in queues.Conclusion. System models based on Petri nets were tested, which showed their liveness and security, which makes it possible to move from models to building formalized specifications for network applications for network cloud services in distributed computing systems with replicated databases. The study of GPSS-model showed that in the case of priority service of update-requests, the time of passage for them is reduced by about 2 to 4 times compared with query-requests, depending on the intensity of the query-requests. In the non-priority mode, the serving conditions for update-queries deteriorate and the time of passage in the queue for them increases by about 2 to 6 times as compared with query-requests depending on the intensity of the query-requests.


Author(s):  
William Y. Chang ◽  
Hosame Abu-Amara ◽  
Jessica Feng Sanford

Sign in / Sign up

Export Citation Format

Share Document