A Design of Granular Model Using Conditional Clustering and Density Peaks

Author(s):  
Keun-Chang Kwak
2021 ◽  
Vol 10 (3) ◽  
pp. 161
Author(s):  
Hao-xuan Chen ◽  
Fei Tao ◽  
Pei-long Ma ◽  
Li-na Gao ◽  
Tong Zhou

Spatial analysis is an important means of mining floating car trajectory information, and clustering method and density analysis are common methods among them. The choice of the clustering method affects the accuracy and time efficiency of the analysis results. Therefore, clarifying the principles and characteristics of each method is the primary prerequisite for problem solving. Taking four representative spatial analysis methods—KMeans, Density-Based Spatial Clustering of Applications with Noise (DBSCAN), Clustering by Fast Search and Find of Density Peaks (CFSFDP), and Kernel Density Estimation (KDE)—as examples, combined with the hotspot spatiotemporal mining problem of taxi trajectory, through quantitative analysis and experimental verification, it is found that DBSCAN and KDE algorithms have strong hotspot discovery capabilities, but the heat regions’ shape of DBSCAN is found to be relatively more robust. DBSCAN and CFSFDP can achieve high spatial accuracy in calculating the entrance and exit position of a Point of Interest (POI). KDE and DBSCAN are more suitable for the classification of heat index. When the dataset scale is similar, KMeans has the highest operating efficiency, while CFSFDP and KDE are inferior. This paper resolves to a certain extent the lack of scientific basis for selecting spatial analysis methods in current research. The conclusions drawn in this paper can provide technical support and act as a reference for the selection of methods to solve the taxi trajectory mining problem.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Julio C. Dominguez ◽  
María Calero-Riestra ◽  
Pedro P. Olea ◽  
Juan E. Malo ◽  
Christopher P. Burridge ◽  
...  

AbstractAlthough roads are widely seen as dispersal barriers, their genetic consequences for animals that experience large fluctuations in population density are poorly documented. We developed a spatially paired experimental design to assess the genetic impacts of roads on cyclic voles (Microtus arvalis) during a high-density phase in North-Western Spain. We compared genetic patterns from 15 paired plots bisected by three different barrier types, using linear mixed models and computing effect sizes to assess the importance of each type, and the influence of road features like width or the age of the infrastructure. Evidence of effects by roads on genetic diversity and differentiation were lacking. We speculate that the recurrent (each 3–5 generations) episodes of massive dispersal associated with population density peaks can homogenize populations and mitigate the possible genetic impact of landscape fragmentation by roads. This study highlights the importance of developing spatially replicated experimental designs that allow us to consider the large natural spatial variation in genetic parameters. More generally, these results contribute to our understanding of the not well explored effects of habitat fragmentation on dispersal in species showing “boom-bust” dynamics.


Electronics ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 364 ◽  
Author(s):  
Hao Wu ◽  
Bo Pang ◽  
Dahai Dai ◽  
Jiani Wu ◽  
Xuesong Wang

Unmanned aerial vehicles (UAV) have become vital targets in civilian and military fields. However, the polarization characteristics are rarely studied. This paper studies the polarization property of UAVs via the fusion of three polarimetric decomposition methods. A novel algorithm is presented to classify and recognize UAVs automatically which includes a clustering method proposed in “Science”, one of the top journals in academia. Firstly, the selection of the imaging algorithm ensures the quality of the radar images. Secondly, local geometrical structures of UAVs can be extracted based on Pauli, Krogager, and Cameron polarimetric decomposition. Finally, the proposed algorithm with clustering by fast search and find of density peaks (CFSFDP) has been demonstrated to be better than the original methods under the various noise conditions with the fusion of three polarimetric decomposition methods.


2013 ◽  
Vol 479-480 ◽  
pp. 468-474
Author(s):  
Byeong Cheol Choi ◽  
Soo Young Ye ◽  
Sung Jae Kim ◽  
Sung Min Kim

The measurement of anesthetic depth is necessary in anesthesiology. NN10 is very simple method among the RR intervals analysis methods. NN10 parameter means the numbers of above the 10 ms intervals of the normal to normal RR intervals. Bispectrum analysis is defined as 2D FFT. EEG signal reflected the non-linear peristalsis phenomena according to the change brain function. After analyzing the bispectrum of the 2 dimension, the most significant power spectrum density peaks appeared abundantly at the specific area in awakening and anesthesia state. These points are utilized to create the new index since many peaks appeared at the specific area in the frequency coordinate. The measured range of an index was 0-100. An index is 20-50 at an anesthesia, while the index is 90-60 at the awake.In this paper, the relation between NN10 parameter using ECG and bisepctrum index using EEG is observed to estimate the depth of anesthesia during anesthesia and then we estimated the utility of the anesthetic.


Sign in / Sign up

Export Citation Format

Share Document