density peaks clustering
Recently Published Documents


TOTAL DOCUMENTS

134
(FIVE YEARS 91)

H-INDEX

14
(FIVE YEARS 6)

2022 ◽  
Vol 2022 ◽  
pp. 1-13
Author(s):  
Zhihe Wang ◽  
Yongbiao Li ◽  
Hui Du ◽  
Xiaofen Wei

Aiming at density peaks clustering needs to manually select cluster centers, this paper proposes a fast new clustering method with auto-select cluster centers. Firstly, our method groups the data and marks each group as core or boundary groups according to its density. Secondly, it determines clusters by iteratively merging two core groups whose distance is less than the threshold and selects the cluster centers at the densest position in each cluster. Finally, it assigns boundary groups to the cluster corresponding to the nearest cluster center. Our method eliminates the need for the manual selection of cluster centers and improves clustering efficiency with the experimental results.


2022 ◽  
Vol 2022 ◽  
pp. 1-17
Author(s):  
Zhihui Hu ◽  
Xiaoran Wei ◽  
Xiaoxu Han ◽  
Guang Kou ◽  
Haoyu Zhang ◽  
...  

Density peaks clustering (DPC) is a well-known density-based clustering algorithm that can deal with nonspherical clusters well. However, DPC has high computational complexity and space complexity in calculating local density ρ and distance δ , which makes it suitable only for small-scale data sets. In addition, for clustering high-dimensional data, the performance of DPC still needs to be improved. High-dimensional data not only make the data distribution more complex but also lead to more computational overheads. To address the above issues, we propose an improved density peaks clustering algorithm, which combines feature reduction and data sampling strategy. Specifically, features of the high-dimensional data are automatically extracted by principal component analysis (PCA), auto-encoder (AE), and t-distributed stochastic neighbor embedding (t-SNE). Next, in order to reduce the computational overhead, we propose a novel data sampling method for the low-dimensional feature data. Firstly, the data distribution in the low-dimensional feature space is estimated by the Quasi-Monte Carlo (QMC) sequence with low-discrepancy characteristics. Then, the representative QMC points are selected according to their cell densities. Next, the selected QMC points are used to calculate ρ and δ instead of the original data points. In general, the number of the selected QMC points is much smaller than that of the initial data set. Finally, a two-stage classification strategy based on the QMC points clustering results is proposed to classify the original data set. Compared with current works, our proposed algorithm can reduce the computational complexity from O n 2 to O N n , where N denotes the number of selected QMC points and n is the size of original data set, typically N ≪ n . Experimental results demonstrate that the proposed algorithm can effectively reduce the computational overhead and improve the model performance.


2022 ◽  
pp. 108123
Author(s):  
Tengfei Gao ◽  
Dan Chen ◽  
Yunbo Tang ◽  
Bo Du ◽  
Rajiv Ranjan ◽  
...  

2021 ◽  
Author(s):  
Hui Ma ◽  
Ruiqin Wang ◽  
Shuai Yang

Abstract Clustering by fast search and find of Density Peaks (DPC) has the advantages of being simple, efficient, and capable of detecting arbitrary shapes, etc. However, there are still some shortcomings: 1) the cutoff distance is specified in advance, and the selection of local density formula will affect the final clustering effect; 2) after the cluster centers are found, the assignment strategy of the remaining points may produce “Domino effect”, that is, once a point is misallocated, more points may be misallocated subsequently. To overcome these shortcomings, we propose a density peaks clustering algorithm based on natural nearest neighbor and multi-cluster mergers. In this algorithm, a weighted local density calculation method is designed by the natural nearest neighbor, which avoids the selection of cutoff distance and the selection of the local density formula. This algorithm uses a new two-stage assignment strategy to assign the remaining points to the most suitable clusters, thus reducing assignment errors. The experiment was carried out on some artificial and real-world datasets. The experimental results show that the clustering effect of this algorithm is better than those other related algorithms.


2021 ◽  
Vol 30 (06) ◽  
Author(s):  
Jian Zhao ◽  
Ning Jia ◽  
Xianhui Liu ◽  
Weidong Zhao

Author(s):  
Xiaoning Yuan ◽  
Hang Yu ◽  
Jun Liang ◽  
Bing Xu

AbstractRecently the density peaks clustering algorithm (DPC) has received a lot of attention from researchers. The DPC algorithm is able to find cluster centers and complete clustering tasks quickly. It is also suitable for different kinds of clustering tasks. However, deciding the cutoff distance $${d}_{c}$$ d c largely depends on human experience which greatly affects clustering results. In addition, the selection of cluster centers requires manual participation which affects the efficiency of the algorithm. In order to solve these problems, we propose a density peaks clustering algorithm based on K nearest neighbors with adaptive merging strategy (KNN-ADPC). A clusters merging strategy is proposed to automatically aggregate over-segmented clusters. Additionally, the K nearest neighbors are adopted to divide data points more reasonably. There is only one parameter in KNN-ADPC algorithm, and the clustering task can be conducted automatically without human involvement. The experiment results on artificial and real-world datasets prove higher accuracy of KNN-ADPC compared with DBSCAN, K-means++, DPC, and DPC-KNN.


Sign in / Sign up

Export Citation Format

Share Document