Wireless autonomic neural network in EEG signal extraction management

Author(s):  
Chiemela Onunka ◽  
Glen Bright ◽  
Riaan Stopforth
2020 ◽  
Vol 15 (1) ◽  
pp. 77-83
Author(s):  
R. Suresh Kumar ◽  
P. Manimegalai

Objective: The EEG signal extraction offers an opportunity to improve the quality of life in patients, which has lost to control the ability of their body, with impairment of locomotion. Electroencephalogram (EEG) signal is an important information source for underlying brain processes. Materials and Methods: The signal extraction and denoising technique obtained through timedomain was then processed by Adaptive Line Enhancer (ALE) to extract the signal coefficient and classify the EEG signals based on FF network. The adaptive line enhancer is used to update the coefficient during the runtime with the help of adaptive algorithms (LMS, RLS, Kalman Filter). Results: In this work, the least mean square algorithm was employed to obtain the coefficient update with respect to the corresponding input signal. Finally, Mat lab and verilog HDL language are used to simulate the signals and got the classification accuracy rate of 80%. Conclusion: Experiments show that this method can get high and accurate rate of classification. In this paper, it is proposed that a low-cost use of Field Programmable Gate Arrays (FPGAs) can be used to process EEG signals for extracting and denoising. As a preliminary study, this work shows the implementation of a Neural Network, integrated with ALE for EEG signal processing. The preliminary tests through the proposed architecture for the activation function shows to be reasonable both in terms of precision and in processing speed.


2013 ◽  
Vol 103 ◽  
pp. 222-231 ◽  
Author(s):  
Aysa Jafarifarmand ◽  
Mohammad Ali Badamchizadeh

Author(s):  
Aditya Dimas

People feel different emotions when listening to music on certain levels. Such feelings occur because the music stimuli causing reduced or increased brain activity and producing brainwave with specific characteristics. Results of research indicated that classical piano music can influence one’s emotional intelligent. By using Electroenchephalography (EEG) as a brainwave recording instrument, we can assess the effect of stimulation on the emotions generated through brain activity. This study aimed at developing a method that defines the effect of sound to brain activity using an EEG signal that can be used to identify one's emotion based on classical piano music stimulus reaction. Based on its frequency, this signal was the classified using DWT. To train Artificial Neural Network, some features were taken from the signal. This ANN research was carried out using the process of backpropagation


Sign in / Sign up

Export Citation Format

Share Document