Integrated active steering control strategy for autonomous articulated vehicles

2020 ◽  
Vol 27 (5) ◽  
pp. 565
Author(s):  
Bo Wang ◽  
Hongshan Zha ◽  
Guoqi Zhong ◽  
Qin Li ◽  
Xiaobo Wang
2016 ◽  
Vol 17 (6) ◽  
pp. 576-586 ◽  
Author(s):  
Kyong-il Kim ◽  
Hsin Guan ◽  
Bo Wang ◽  
Rui Guo ◽  
Fan Liang

2019 ◽  
Vol 11 (11) ◽  
pp. 168781401989210 ◽  
Author(s):  
Guangfei Xu ◽  
Peisong Diao ◽  
Xiangkun He ◽  
Jian Wu ◽  
Guosong Wang ◽  
...  

In the research process of automotive active steering control, due to the model uncertainty, road surface interference, sensor noise, and other influences, the control accuracy of the active steering system will be reduced, and the driver’s road sense will become worse. The traditional robust controller can solve the model uncertainty, pavement disturbance and sensor noise in the design process, but cannot consider the performance enough. Therefore, this article proposes an active steering control method based on linear matrix inequality. In this method, the model uncertainty, road interference, sensor noise, yaw velocity, and slip side angle tracking errors are all considered as constraint targets, respectively, so that the performance and robust stability of the active front steering system can be guaranteed. Finally, simulation and hardware in the loop experiment are implemented to verify the effect of active front steering system under the linear matrix inequality controller. The results show that the proposed control method can achieve better robust performance and robust stability.


Author(s):  
B. A. Jujnovich ◽  
D. Cebon

Passive steering systems have been used for some years to control the steering of trailer axles on articulated vehicles. These normally use a “command steer” control strategy, which is designed to work well in steady-state circles at low speeds, but which generates inappropriate steer angles during transient low-speed maneuvers and at high speeds. In this paper, “active” steering control strategies are developed for articulated heavy goods vehicles. These aim to achieve accurate path following for tractor and trailer, for all paths and all normal vehicle speeds, in the presence of external disturbances. Controllers are designed to implement the path-following strategies at low and high speeds, whilst taking into account the complexities and practicalities of articulated vehicles. At low speeds, the articulation and steer angles on articulated heavy goods vehicles are large and small-angle approximations are not appropriate. Hence, nonlinear controllers based on kinematics are required. But at high-speeds, the dynamic stability of control system is compromised if the kinematics-based controllers remain active. This is because a key state of the system, the side-slip characteristics of the trailer, exhibits a sign-change with increasing speeds. The low and high speed controllers are blended together using a speed-dependent gain, in the intermediate speed range. Simulations are conducted to compare the performance of the new steering controllers with conventional vehicles (with unsteered drive and trailer axles) and with vehicles with command steer controllers on their trailer axles. The simulations show that active steering has the potential to improve significantly the directional performance of articulated vehicles for a wide range of conditions, throughout the speed range.


Author(s):  
Yoshiyuki Tanaka ◽  
Yusuke Kashiba ◽  
Naoki Yamada ◽  
Takamasa Suetomi ◽  
Kazuo Nishikawa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document