high speeds
Recently Published Documents


TOTAL DOCUMENTS

1075
(FIVE YEARS 263)

H-INDEX

42
(FIVE YEARS 7)

Author(s):  
Dattaraj Raikar

Abstract: Double Wishbone suspension systems are by far the best choice of suspension systems recommended for sports vehicles. It is more stable and stiffer when compared to the other suspension geometries. In this report a brief study of how a double-wishbone suspension system acts under loading conditions when traveling at high speeds is presented, also the forces acting on its components are analysed, and post-processed results are discussed. The geometry of the whole suspension is designed on SolidWorks and analysis is performed on Ansys software. Further the results from the analysis are studied based on material selection and various analysis methods. Finally, the proposed suspension system is concluded safe to use when the values of Equivalent stress, Total Deformation, and Factor of Safety were measured and under threshold limits. Keywords: double wishbone suspension, static structural, suspension system, analysis, deformation, Ansys, stress analysis, FOS, FEA, structural analysis.


Author(s):  
Mykola Prokopenko

The article provides an analytical review and analysis of stresses and deformations of parts moving at high speeds in a liquid or gas. The working conditions of materials and parts of turbines (blades, rotor and casing) operating at high temperatures and loads are analyzed. The main ways of solving the problem of ensuring the strength of such parts are presented. The main ways to solve the problem of reliability of parts or the product as a whole are given: mathematical modeling (calculated determination of strength, durability and reliability); physical modeling (model testing); testing of full-scale products in reproducible real or operational conditions.It is impossible to speak about the strength of a part only from the calculation of deformations and stresses, even taking into account their change over time, so it is necessary to have strength criteria that establish the relationship between the strength parameters. It is emphasized that in the general case, the criterion of strength should answer the question: will the part collapse or not with the known laws of change in time of stresses, strains and temperatures It is shown that the considered standard characteristics of creep and long-term strength can be directly used in calculations only for those parts in which the uniaxial stress state at constant stresses and temperature is realized, when the working conditions of the material fully meet the test conditions of materials.An analytical view of deformation diagrams is considered as the main means of carrying out practical calculations of material strength. It is shown that in order to determine the stresses and strains in parts that move at high speeds in a liquid or gas, it is necessary to take into account the model of parts exploitation, the processes of creep and thermal fatigue of the material, and the unsteadiness of load processes. Keywords: stresses and deformations of turbine parts; deformation diagram; operating model of turbine parts; creep and thermal fatigue; nonstationarity of loading processes  


Robotics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 3
Author(s):  
Takahiro Fukui ◽  
Souichiro Matsukawa ◽  
Yasushi Habu ◽  
Yasuhiro Fukuoka

We propose a method to achieve autonomous gait transition according to speed for a quadruped robot pacing at medium speeds. We verified its effectiveness through experiments with the simulation model and the robot we developed. In our proposed method, a central pattern generator (CPG) is applied to each leg. Each leg is controlled by a PD controller based on output from the CPG. The four CPGs are coupled, and a hard-wired CPG network generates a pace pattern by default. In addition, we feed the body tilt back to the CPGs in order to adapt to the body oscillation that changes according to the speed. As a result, our model and robot achieve stable changes in speed while autonomously generating a walk at low speeds and a rotary gallop at high speeds, despite the fact that the walk and rotary gallop are not preprogramed. The body tilt angle feedback is the only factor involved in the autonomous generation of gaits, so it can be easily used for various quadruped robots. Therefore, it is expected that the proposed method will be an effective control method for quadruped robots.


2021 ◽  
Author(s):  
Sirsendu Sekhar Ray ◽  
Bitop Maitra

It is still unknown how molecules coordinate their activity and operate at high speeds in the crowded environment of a cell. The study focuses on the geometry of biomolecules, assuming B-DNA, α-helix, β-strand, water molecules, and chemical bonds, including hydrogen bonds, as various types of antennas. The analysis demonstrates that living systems have highly sophisticated wireless and wired communication infrastructures for regulating and coordinating molecular activities, revealing why water is essential for molecular dynamics and indicating how we evolved. The study also includes a few equations linking antenna fields with Einstein’s general relativity, Kepler’s law of planetary motion, and Newton’s law of gravitation, which divides the gravitational field into antenna field zones and clarifies many astronomical facts. The findings, furthermore, suggest that the gravitational field is the antenna field of astronomical objects; and that nature's antennas, such as molecules and astronomical objects, communicate via gravitational waves. We hope that the study, which uses a classical approach to explain the facts of living systems and the Universe, will find applications in biology, astronomy, communication engineering, and other areas of science.


Author(s):  
Sirsendu Sekhar Ray ◽  
Bitop Maitra

It is still unknown how molecules coordinate their activity and operate at high speeds in the crowded environment of a cell. The study focuses on the geometry of biomolecules, assuming B-DNA, α-helix, β-strand, water molecules, and chemical bonds, including hydrogen bonds, as various types of antennas. The analysis demonstrates that living systems have highly sophisticated wireless and wired communication infrastructures for regulating and coordinating molecular activities, revealing why water is essential for molecular dynamics and indicating how we evolved. The study also includes a few equations linking antenna fields with Einstein’s general relativity, Kepler’s law of planetary motion, and Newton’s law of gravitation, which divides the gravitational field into antenna field zones and clarifies many astronomical facts. The findings, furthermore, suggest that the gravitational field is the antenna field of astronomical objects; and that nature's antennas, such as molecules and astronomical objects, communicate via gravitational waves. We hope that the study, which uses a classical approach to explain the facts of living systems and the Universe, will find applications in biology, astronomy, communication engineering, and other areas of science.


2021 ◽  
Author(s):  
Tiago Cousseau

Grease lubrication performance prediction is challenging. Only recently that empirical equations to predict grease film thickness for prevailing rolling conditions under fully flooded lubrication taking into account thickener properties and content for low, moderate, and high speeds were developed. At starved lubrication, although new insights about the supply and loss mechanisms that govern film formation have been published, contact replenishment and, consequently, film thickness predictions for long-term operation are still not available. Prediction of components efficiency requires film thickness values and properties, including film’s molecular structure, which makes it even more challenging. When it comes to prevailing sliding conditions, the literature is scarce and most of the knowledge developed for prevailing rolling conditions is not applicable. During the sliding of the contacting bodies, boundary and mixed lubrication regimes are expected. In this situation, the tribological response is primarily defined by grease thickener and additives physicochemical interaction with the surface. This complexity leads many researchers to seek simpler relationships between grease formulation and properties with its performance. This review aims to present the state-of-art on grease lubrication and update some of these relationships.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4405
Author(s):  
Adnan Mazari

Medical textiles, such as gowns, scrubs, and even disposable uniforms, are all stitched by sewing machines. These garments are mostly made from polypropylene (PP) and polyester due to their durability, antibacterial performance, and functionality. Demand for these garments has significantly risen in the last few years, and sewing machines are able to stitch at extremely high speeds. However, higher sewing speeds can cause burnt spots on the fabric, lower seam strength, and a decrease in production due to thread breakage. In this paper, I have deeply discussed how medical textiles lose their strength and functionality due to higher sewing speeds; this problem is often neglected due to high production demands. This research is based on PP medical gowns, stitched with polyester (PET) threads, sewn at different speeds. The experimental work is also followed by a theoretical explanation of needle heating during the stitching of medical textiles.


Author(s):  
Z Kok ◽  
J T Duffy ◽  
S Chai ◽  
Y Jin

The demand to increase port throughput has driven container ships to travel relatively fast in shallow water whilst avoiding grounding and hence, there is need for more accurate high-speed squat predictions. A study has been undertaken to determine the most suitable method to predict container ship squat when travelling at relatively high speeds (Frh ≥ 0.5) in finite water depth (1.1 ≤ h/T ≤ 1.3). The accuracy of two novel self-propelled URANS CFD squat model are compared with that of readily available empirical squat prediction formulae. Comparison of the CFD and empirical predictions with benchmark data demonstrates that for very low water depth (h/T < 1.14) and when Frh < 0.46; Barass II (1979), ICORELS (1980), and Millward’s (1992) formulae have the best correlation with benchmark data for all cases investigated. However, at relatively high speeds (Frh ≥ 0.5) which is achievable in deeper waters (h/T ≥ 1.14), most of the empirical formulae severely underestimated squat (7-49%) whereas the quasi-static CFD model presented has the best correlation. The changes in wave patterns and effective wake fraction with respect to h/T are also presented.


2021 ◽  
Vol 158 (A4) ◽  
Author(s):  
J Chen ◽  
Z J Zou ◽  
M Chen ◽  
H M Wang

Ships tend to maneuver in oblique motion at low speed in situations such as turning in a harbor, or during offloading, dynamic positioning and mooring processes. The maneuverability criteria proposed by IMO are valid for ships sailing with relatively high speeds and small drift angles, which are inadequate to predict ship maneuverability in low speed condition. Hydrodynamic performance of ships maneuvering at low speed is needed to know for safety issues. A CFD-based method is employed to predict the flow around an Esso Osaka bare hull model in oblique motion at low speed, where the drift angle varies from 0° to 180°. The URANS method with the SST k-ω model is used for simulating ship flows with drift angles 0°~30° and 150°~180°, and DES method for simulating ship flows with drift angles 40°~150°. Verification and validation studies are conducted for drift angles of 0° and 70°. The vortex structures at typical drift angles of 0°, 30°, 50°, 70°, 90° and 180° are analyzed. The effects of drift angle and ship speed are demonstrated.


Author(s):  
I Almallah ◽  
J Lavroff ◽  
D S Holloway ◽  
M R Davis

Wave-piercing catamaran hull forms are widely used for high-speed ferry applications due to the hull slenderness, suitable for achieving high speeds. The global loads acting on these craft are of great interest as there is limited knowledge on determining the magnitude of the loads, in particular when operating in random sea conditions. Longitudinal and transverse bending moments as well as pitch connecting moments and hull torsion loads act on the hull simultaneously. This paper investigates the estimation of these global loads from full-scale catamaran sea trials strain gauge data using finite element methods. Det Norske Veritas (DNV) load cases are applied to a finite element model in order to determine the conversion between local strain values observed during sea trials and prevailing global loads. Comparisons are thus made of global loads determined from strain data collected from sea trials with DNV global load cases. The results show that this method is relatively reliable for the prediction of hull global loads in the absence of slamming. Comparisons have been made for different heading angles. The quasi-static design loads are important during the ship design stage, as they are good proxies in wavelengths comparable to the hull length for rationally determined loads obtained from a first-principles dynamic analysis. The broad aims here are to demonstrate the use of strain sensor data obtained during sea trials for determination of global sea loads, to reconcile the loads thus determined with DNV load cases and thereby to improve the accuracy of the predicted loads used in design to increase the structural efficiency of vessel design.


Sign in / Sign up

Export Citation Format

Share Document