Solving multi-objective flexible flow-shop scheduling problem using teaching-learning-based optimization embedded with maximum deviation theory

Author(s):  
Raviteja Buddala ◽  
Siba Sankar Mahapatra ◽  
Manas Ranjan Singh
2021 ◽  
pp. 1-15
Author(s):  
Deming Lei ◽  
Bingjie Xi

Distributed scheduling has attracted much attention in recent years; however, distributed scheduling problem with uncertainty is seldom considered. In this study, fuzzy distributed two-stage hybrid flow shop scheduling problem (FDTHFSP) with sequence-dependent setup time is addressed and a diversified teaching-learning-based optimization (DTLBO) algorithm is applied to optimize fuzzy makespan and total agreement index. In DTLBO, multiple classes are constructed and categorized into two types according to class quality. Different combinations of global search and neighborhood search are used in two kind of classes. A temporary class with multiple teachers is built based on Pareto rank and difference index and evolved in a new way. Computational experiments are conducted and results demonstrate that the main strategies of DTLBO are effective and DTLBO has promising advantages on solving the considered problem.


SIMULATION ◽  
2018 ◽  
Vol 95 (6) ◽  
pp. 509-528 ◽  
Author(s):  
R Rooeinfar ◽  
S Raissi ◽  
VR Ghezavati

This study focused on the uncertain flexible flow shop scheduling problem with limited buffers when preventive maintenance is applied at fixed intervals. This issue has not been addressed in spite of widespread applications, due to complexity arising in solving such a stochastic decision making problem. To this aim, a novel optimization model is presented along with two types of solving methods using metaheuristic algorithms with and without a computer simulation model. The proposed hybrid method, named HSIM-META, integrates the computer simulation model along with the three most common metaheuristic algorithms, i.e., genetic algorithm (GA), simulated annealing (SA) algorithm, and particle swarm optimization (PSO), which offer better solution quality according to the literature. For this purpose, the simulation outputs are applied as an initial population for the tuned metaheuristic parameters to look for the next improved solution by investigating different approaches. Different numerical examples are discussed to examine the performance of the proposed method. The computational results of the proposed method, including hybrid simulation with GA (HSIM-GA), SA (HSIM-SA), and PSO (HSIM-PSO), are compared with the just applying GA, SA, and PSO. The results reveal that the suggested method acts more efficiently in terms of accuracy and speed in solving the problem.


Sign in / Sign up

Export Citation Format

Share Document