Multi-objective quantum inspired Cuckoo search algorithm and multi-objective bat inspired algorithm for the web service composition problem

Author(s):  
Serial Rayene Boussalia ◽  
Allaoua Chaoui ◽  
Aurélie Hurault ◽  
Meriem Ouederni ◽  
Philippe Queinnec
2017 ◽  
Vol 22 (24) ◽  
pp. 8353-8378 ◽  
Author(s):  
Mostafa Ghobaei-Arani ◽  
Ali Asghar Rahmanian ◽  
Mohammad Sadegh Aslanpour ◽  
Seyed Ebrahim Dashti

Author(s):  
Arion de Campos Jr. ◽  
Aurora T. R. Pozo ◽  
Silvia R. Vergilio

The Web service composition refers to the aggregation of Web services to meet customers' needs in the construction of complex applications. The selection among a large number of Web services that provide the desired functionalities for the composition is generally driven by QoS (Quality of Service) attributes, and formulated as a constrained multi-objective optimization problem. However, many equally important QoS attributes exist and in this situation the performance of the multi-objective algorithms can be degraded. To deal properly with this problem we investigate in this chapter a solution based in many-objective optimization algorithms. We conduct an empirical analysis to measure the performance of the proposed solution with the following preference relations: Controlling the Dominance Area of Solutions, Maximum Ranking and Average Ranking. These preference relations are implemented with NSGA-II using five objectives. A set of performance measures is used to investigate how these techniques affect convergence and diversity of the search in the WSC context.


2021 ◽  
Author(s):  
◽  
Alexandre Sawczuk da Silva

<p>Automated Web service composition is one of the holy grails of service-oriented computing, since it allows users to create an application simply by specifying the inputs the resulting application should require, the outputs it should produce, and any constraints it should observe. The composition problem has been handled using a variety of techniques, from AI planning to optimisation algorithms, however no work so far has focused on handling multiple composition facets simultaneously, producing solutions that: (1) are fully functional (i.e. fully executable, with semantically-matched inputs and outputs), (2) employ a variety of composition constructs (e.g. sequential, parallel, and choice constructs), and (3) are optimised according to non-functional Quality of Service (QoS) measurements. The overall goal of this thesis is to propose hybrid Web service composition approaches that consider elements from all three facets described above when generating solutions. These approaches combine elements of AI planning and of Evolutionary Computation to allow for the creation of compositions that meet all of these requirements.  Firstly, this thesis proposes two novel approaches for Web service composition with direct representations. The first one is a tree-based approach where the leaf nodes are the atomic services included in the composition and the inner nodes are the structural constructs that shape the composition workflow. The second one is a graph-based approach where the atomic services are the vertices and the edges connecting them form the composition workflow. The two approaches are compared to determine which is most suitable to the QoS-aware fully automated Web service composition problem.  Secondly, this thesis proposes novel sequence-based approaches for Web service composition that use an indirect representation, i.e. they encode solutions as sequences of services. By representing solutions in this way, it is possible to initialise and evolve them without having to enforce their functional correctness. Then, before evaluating the fitness of each solution, a decoding algorithm is used to transform the sequence into the corresponding composition. The decoding algorithm builds the workflow using the ordering in the sequence as closely as possible when selecting the next service to be added, while at the same time generating a functionally correct structure.  Thirdly, this thesis treats Web service composition as a multi-objective problem, generating a set of trade-off solutions the user can choose from. More specifically, it proposes multi-objective approaches to fully automated Web service composition, which means that conflicting QoS attributes are independently optimised using a variety of representations that support flexible workflow structures. Additionally, a multi-objective and fully automated memetic approach that uses a local search operator to further improve the quality of solutions is proposed.  The following major contributions have been made in this thesis. Firstly, two approaches for Web service composition with direct representations were proposed. When the choice construct is not considered, the graph-based approach produces solutions of higher quality than those of the tree-based approach, but the opposite is true when the choice construct is included. Secondly, indirect representation approaches for Web service composition were proposed. These approaches perform well and can produce solutions with better quality than those found by the graph-based approach. Finally, we propose multi-objective approaches to fully automated service composition, employing different problem representations and a local search operator. The multi-objective approaches using the sequence-based representation were found to produce solutions with better overall quality.</p>


2010 ◽  
pp. 193-221 ◽  
Author(s):  
Enrico Pontelli ◽  
Tran Cao Son ◽  
Chitta Baral

This chapter presents a comprehensive logic programming framework designed to support intelligent composition of Web services. The underlying model relies on the modeling of Web services as actions, each described by a logic programming theory. This view allows the use of logic-based planning to address the Web service composition problem, taking advantage of the fact that logic-based planning enables the elegant introduction of a number of extensions and generalizations (e.g., dealing with incomplete knowledge and preferences). The theory describing each Web service is encoded as a logic programming module, and different semantics are allowed within different modules, thus better reflecting the practical use of different service description formalisms and ontologies.


2021 ◽  
Author(s):  
◽  
Alexandre Sawczuk da Silva

<p>Automated Web service composition is one of the holy grails of service-oriented computing, since it allows users to create an application simply by specifying the inputs the resulting application should require, the outputs it should produce, and any constraints it should observe. The composition problem has been handled using a variety of techniques, from AI planning to optimisation algorithms, however no work so far has focused on handling multiple composition facets simultaneously, producing solutions that: (1) are fully functional (i.e. fully executable, with semantically-matched inputs and outputs), (2) employ a variety of composition constructs (e.g. sequential, parallel, and choice constructs), and (3) are optimised according to non-functional Quality of Service (QoS) measurements. The overall goal of this thesis is to propose hybrid Web service composition approaches that consider elements from all three facets described above when generating solutions. These approaches combine elements of AI planning and of Evolutionary Computation to allow for the creation of compositions that meet all of these requirements.  Firstly, this thesis proposes two novel approaches for Web service composition with direct representations. The first one is a tree-based approach where the leaf nodes are the atomic services included in the composition and the inner nodes are the structural constructs that shape the composition workflow. The second one is a graph-based approach where the atomic services are the vertices and the edges connecting them form the composition workflow. The two approaches are compared to determine which is most suitable to the QoS-aware fully automated Web service composition problem.  Secondly, this thesis proposes novel sequence-based approaches for Web service composition that use an indirect representation, i.e. they encode solutions as sequences of services. By representing solutions in this way, it is possible to initialise and evolve them without having to enforce their functional correctness. Then, before evaluating the fitness of each solution, a decoding algorithm is used to transform the sequence into the corresponding composition. The decoding algorithm builds the workflow using the ordering in the sequence as closely as possible when selecting the next service to be added, while at the same time generating a functionally correct structure.  Thirdly, this thesis treats Web service composition as a multi-objective problem, generating a set of trade-off solutions the user can choose from. More specifically, it proposes multi-objective approaches to fully automated Web service composition, which means that conflicting QoS attributes are independently optimised using a variety of representations that support flexible workflow structures. Additionally, a multi-objective and fully automated memetic approach that uses a local search operator to further improve the quality of solutions is proposed.  The following major contributions have been made in this thesis. Firstly, two approaches for Web service composition with direct representations were proposed. When the choice construct is not considered, the graph-based approach produces solutions of higher quality than those of the tree-based approach, but the opposite is true when the choice construct is included. Secondly, indirect representation approaches for Web service composition were proposed. These approaches perform well and can produce solutions with better quality than those found by the graph-based approach. Finally, we propose multi-objective approaches to fully automated service composition, employing different problem representations and a local search operator. The multi-objective approaches using the sequence-based representation were found to produce solutions with better overall quality.</p>


2011 ◽  
pp. 355-378
Author(s):  
Enrico Pontelli ◽  
Tran Cao Son ◽  
Chitta Baral

This chapter presents a comprehensive logic programming framework designed to support intelligent composition of Web services. The underlying model relies on the modeling of Web services as actions, each described by a logic programming theory. This view allows the use of logic-based planning to address the Web service composition problem, taking advantage of the fact that logic-based planning enables the elegant introduction of a number of extensions and generalizations (e.g., dealing with incomplete knowledge and preferences). The theory describing each Web service is encoded as a logic programming module, and different semantics are allowed within different modules, thus better reflecting the practical use of different service description formalisms and ontologies.


Sign in / Sign up

Export Citation Format

Share Document