A realistic cost allocation methodology based on power flow tracing in deregulated power systems

2021 ◽  
Vol 12 (3) ◽  
pp. 1
Author(s):  
C.V. Suresh ◽  
V. Ganesh ◽  
B. Venkata Prasanth ◽  
Luke John Baktha Singh Immaraju
2021 ◽  
Vol 12 (3) ◽  
pp. 171
Author(s):  
Luke John Baktha Singh Immaraju ◽  
B. Venkata Prasanth ◽  
V. Ganesh ◽  
C.V. Suresh

Author(s):  
A. K. VERMA ◽  
V. VIJAY VENU

The onset of deregulation in the electric power sector in the recent years has brought to the fore several pronounced issues related to reliability management, necessitating a revamping of the metrics. The element of markets and economic trading introduced in the operations of power systems has seen a paradigm shift even in the way customer-say is incorporated into the reliability apportioning. In order to better appreciate the sea-changes brought forward by deregulation, identification of areas of evolving reliability research in the regulated regime goes a long way in dealing with their deregulated counterparts. This paper caters to the view to provide a pointer to the significant issues that can profoundly impact the reliability studies in the liberalized environment. Emphasis in this paper is placed on a bilateral market structure, where all participants of competitive trading have mutually agreed upon pre-defined contracts to trade energy. With a view to improvise upon the existing nascent reliability network equivalent techniques, a realistic state space selection methodology, crucial to the contingency effects' evaluation is proposed, which makes a novel use of power flow tracing procedures. This research work is intended to pave the way for robust reliability models that take into account all the structural and consequent operational transmutations in power systems, yielding a concrete possibility of implementing non-uniform reliability as per the user requirements — a situation that was not feasible in the earlier regime.


Author(s):  
Prakash Burade ◽  
Rajendra Sadafale ◽  
Anand Satpute

A Repeated Power Flow with FACTS devices including ATC is used to evaluate the feasible ATC value within real and reactive power generation limits, line thermal limits, voltage limits and FACTS operation limits. An IEEE-30 bus system is used to demonstrate the effectiveness of the algorithm as an optimization tool to enhance ATC. A Genetic Algorithm technique is used for validation purposes. Introduction of FACTS devices in a right combination of location and parameters could enhance ATC and Ant Colony optimization can be efficiently used for this kind of nonlinear integer optimization.


2018 ◽  
Vol 7 (1.8) ◽  
pp. 20
Author(s):  
Danalakshmi D ◽  
Kannan S ◽  
Gnanadass R

The shift from regulated to restructured power system results in an increased competition among the electricity market. In restructured power system, the separation of transmission services from generation and distribution makes it necessary to find the contribution of power from individual generator to individual load. The power flow tracing method is used to obtain the generator power output to a particular load. The reactive power has to be maintained in order to sustain the voltage level throughout the system for reliable and secure operation. Hence the reactive power cost allocation has become imperative in the power system. In this paper, the tracing method is integrated with the optimal reactive power dispatch problem to trace the generator minimal reactive power for sustaining the real power transaction and enhancing the system security by meeting the demand. The Differential Evolution is used for optimal reactive power dispatch. The cost allocation to the generators for the reactive power service based on the opportunity cost method is obtained for 62 Bus Indian Utility Systems.


Sign in / Sign up

Export Citation Format

Share Document